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Abstract

We consider the problem of computing the maximal probability of satisfying an w-regular specification for stochastic,
continuous-state, nonlinear systems evolving in discrete time. The problem reduces, after automata-theoretic con-
structions, to finding the maximal probability of satisfying a parity condition on a (possibly hybrid) state space. While
characterizing the exact satisfaction probability is open, we show that a lower bound on this probability can be obtained
by (I) computing an under-approximation of the qualitative winning region, i.e., states from which the parity condition can
be enforced almost surely, and (Il) computing the maximal probability of reaching this qualitative winning region.

The heart of our approach is a technique to symbolically compute the under-approximation of the qualitative winning
region in step (I) via a finite-state abstraction of the original system as a 21/2-player parity game. Our abstraction procedure
uses only the support of the probabilistic evolution; it does not use precise numerical transition probabilities. We prove
that the winning set in the abstract 21/2-player game induces an under-approximation of the qualitative winning region in
the original synthesis problem, along with a policy to solve it. By combining these contributions with (a) existing symbolic
fixpoint algorithms to solve 21/>-player games and (b) existing techniques for reachability policy synthesis in stochastic
nonlinear systems, we get an abstraction-based symbolic algorithm for finding a lower bound on the maximal satisfaction
probability.

We have implemented step (I) of our approach and evaluated it on the nonlinear model of a perturbed bistable switch
from the literature. We show empirically that the lower bound on the winning region computed by our approach is precise,
by comparing against an over-approximation of the qualitative winning region. Moreover, our symbolic implementation
outperforms a recently proposed tool for solving this problem by a large margin. In fact, in many cases the existing tool
crashed after consuming too much memory on a standard laptop, whereas our tool consumed small amount of memory
and produced results within reasonable amount of time.
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[. INTRODUCTION

Controlled Markov processes (CMPs) over continuous state spaces and evolving in discrete time form a general model
for temporal decision making under stochastic uncertainty. In recent years, the problem of finding or approximating optimal
policies in CMPs for specifications given in temporal logics or automata has received a lot of attention. While there is a steady
progression towards more expressive models and properties [11], [12], [17], [30], [37], [41], a satisfactory solution that can
handle nonlinear models for general w-regular specifications in a symbolic way is still open. In this paper, we make progress
toward a solution to this general problem.

For finite-state Markov decision processes (MDP), one can find optimal policies for w-regular specifications by decomposing
the problem into two parts [2], [3], [8], [9]. (I) Using graph-theoretic techniques that ignore the actual transition probabilities,
one can find the set of states that ensures the satisfaction of the specification almost surely. Further, for any state in this almost
sure winning region, an optimal policy for almost sure satisfaction of the specification can be derived. (II) One finds an optimal
policy to reach the almost sure winning region using linear programming or traditional dynamic programming approaches.
Combining both policies returns an optimal policy for the overall synthesis problem.

Unfortunately, this two-step solution approach does not carry over to optimal policy synthesis for all w-regular specifications
given a continuous-state CMP. First, we do not have characterizations of optimal policies for almost sure satisfaction in this
case—such as whether randomization or memory is necessary. Second, in contrast to finite-sate MDPs, it is possible that the
almost sure winning region of a CMP is empty, even if there is a policy that satisfies the specification with positive probability
[30].

However, as we show in this paper, the same decomposition can be used to compute an under-approximation for the optimal
policy instead: that is, the resulting policy gives a lower bound on the probability of satisfying a given w-regular specification
from every state. While existing techniques [17], [35], [41] can be used in step (II) to compute the reachability probability with
any given precision, we provide a new technique to under-approximate the set of states of a CMP that almost surely satisfies
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a parity specification in step (I) of the decomposition. A parity specification is a canonical representation for all w-regular
properties [13], [39]; thus, our approach provides a way to under-approximate any w-regular specification.

The main contribution of our paper is to show that the approximate solution to step (I) can be computed by a symbolic
algorithm over a finite state abstraction of the underlying CMP that is using only the support of the probabilistic evolution of
the system. This abstraction-based policy synthesis technique is inspired by abstraction-based controller design (ABCD) for
non-stochastic systems [31], [33], [38]. In ABCD, a nonlinear dynamical system is abstracted into a discrete two-player game
over a finite discrete state space obtained by partitioning the continuous state space into a finite set of cells. The resulting
abstract two-player game is then used to synthesize a discrete controller which is then refined into a continuous controller for
the original system.

In ABCD, the abstract two-player game models the interplay between the controller (Player 0) and the dynamics (Player 1)
such that the resulting abstract controller (i.e., the winning strategy of Player 0) can be correctly refined to the original system.
This requires a very powerful Player 1; in every instance of the play (corresponding to the system being in one particular
abstract cell 5) and for any input u chosen by Player 0, Player 1 can adversarially choose both (a) the actual continuous
state s within § to which w is applied and (b) any continuous disturbance affecting the system at this state s.

The key insight in our work is that the stochastic nature of the underlying CMP does not require a fully adversarial treatment
of continuous disturbances by Player 1 in the abstract game to allow for controller refinement. Intuitively, disturbances need
to be handled in a fair way: In the long run, all transitions with positive probability will eventually occur. We show, that the
resulting fairness assumption on the behavior of Player 1 can be modeled by an additional random player (also called 1/2
player) resulting in a so called 21/2-player game [4]-[6] as the abstraction.

This provides a conceptually very appealing result of our paper. Using 21/2-player games as abstractions of CMPs allows to
utilize the machinery of symbolic game solving, analogous to ABCD techniques for non-stochastic systems, while capturing
the intuitive differences between the problem instances by the use of a random player in the abstract game. Most interestingly,
the stochastic nature of the resulting abstract game eases the abstract synthesis problem compared to standard ABCD where
disturbances are non-stochastic. In conclusion, we obtain a symbolic algorithm to compute an under-approximation of the almost
sure winning region in a continuous-state CMP for all w-regular specifications. Moreover, similar to the results for finite-state
MDPs, this shows that the (approximate) solution to step (I) does not need to handle the actual transition probabilities. They
are only needed in step (II), where existing techniques can be used.

A preliminary version of our paper has been accepted for publication in an upcoming conference [29]. In this manuscript
we have made substantial improvement over the conference version; the main additional contributions are as follows:

1) We have addressed the quantitative aspect of the optimal policy synthesis problem in Thm. 3.2 and Thm. 3.3, making our
exposition complete. In contrast, the conference version of the paper only dealt with the qualitative aspect of the problem.

2) We have added the proof of Thm. 4.5, which is the main theorem of this paper and which was omitted in the conference
version.

3) We have substantially improved the experimental evaluation (see Sec. VI) of our approach by considering benchmark
examples proposed by other authors, and comparing the performance of our tool against the available tool from the
literature.

4) We have provided examples and extensive explanation of the required steps throughout the manuscript.

Related Work. Our paper extends the recent results of Majumdar et al. [30] from Biichi specifications to parity specifications.
Seen through the lens of 2!/2-player games, the algorithm of Majumdar et al. [30] can be seen as directly solving a Biichi
game symbolically on a non-probabilistic abstraction, by implicitly reducing the 21/2-player games to two player games on
graphs with extreme fairness assumptions [18]. While it may be possible to present a similar “direct” symbolic algorithm for
parity games, the details of handling fairness symbolically get difficult. Our exposition in this paper helps separate out the
different combinatorial aspects: the representation of the abstraction and the solution of the game on the abstraction, leading
to a clean proof of correctness.

21/>-player games have been used as abstractions of probabilistic systems, both in the finite case [24] and for stochastic
linear systems [37]. Our paper subsumes the result of both these cases by showing a computational procedure to abstract a
general, nonlinear CMP into a finite-state 21/2-player game. Further the existing approach for stochastic linear systems [37]
only considers specifications in the GR(1) fragment of linear temporal logic, whereas we can handle any w-regular specification.
Another difference is that the linearity assumption enables the use of symbolic algorithms based on polyhedral manipulations,
when the specification is given using polytopic predicates on the state space. Instead, our abstractions are based on gridding
the state space, as in ABCD for non-stochastic nonlinear systems.

Stochastic nonlinear systems were abstracted to finite-state bounded-parameter Markov decision processes (BMDP) by
Dutreix et al. [12] for the purpose of controller synthesis. By using algorithms for finding controllers on BMDPs against
deterministic Rabin automata, they provide an alternative approach for approximating the optimal controller against w-regular
specifications. Their method is conceptually very different. It explicitly computes lower and upper bounds of all involved
transition probabilities for constructing the BMDP, and computes winning regions by an enumerative algorithm taking these
probability bounds into account. On the other hand, our approach shows a clean separation between step (II), which requires



knowing explicit transition probabilities but can be solved by existing techniques, and step (I), for which this knowledge is
not needed. This allows us to provide a conceptually simpler and computationally superior symbolic algorithm approximately
solving (I) via abstract 21/2-player games.

In principle, one can alternatively obtain a similar 21/2-player game, like us, by first reducing a CMP to a BMDP using the
method of Dutreix et al. [12] and then reducing the BMDP to a 21/2-player game using the results of Weininger et al. [44].
However, this would still require going through the expensive construction of the BMDP, whereas we present a direct and
computationally efficient way to obtain a 21/2-player game through reachable set computations for the CMP. The computational
benefit of our approach over the BMDP based method is enormous: On a couple of benchmark examples taken from the paper
of Dutreix et al. [12] itself, our uniform-grid based implementation was up to around 150 times faster and used up to around
150 times smaller amount of memory than their adaptive refinement-based implementation. The details of the experiments can
be found in Sec. VL.

Il. STOCHASTIC NONLINEAR SYSTEMS
A. Preliminaries

For any set A, a sigma-algebra on A comprises subsets of A as events that includes A itself and is closed under complement
and countable unions. We consider a probability space (€2, Fo, Pq), where € is the sample space, Fq, is a sigma-algebra on (2,
and P, is a probability measure that assigns probabilities to events. An ((S, Fg)-valued) random variable X is a measurable
function of the form X : (Q, Fq) — (S, Fg), where S is the codomain of X and Fg is a sigma-algebra on S. Any random
variable X induces a probability measure on its space (S, Fg) as P({A}) = Po{X !(A)} for any A € Fs. We often directly
discuss the probability measure on (S, Fg) without explicitly mentioning the underlying probability space (92, Fq, Po) and
the function X itself.

A topological space S is called a Borel space if it is homeomorphic to a Borel subset of a Polish space (i.e., a separable
and completely metrizable space). Examples of a Borel space are the Euclidean spaces R", its Borel subsets endowed with a
subspace topology, as well as hybrid spaces. Any Borel space S is assumed to be endowed with a Borel sigma-algebra (i.e.,
the one generated by the open sets in the topology), which is denoted by B(.S). We say that a map f : S — Y is measurable
whenever it is Borel measurable.

Given an alphabet A, we use the notation A* and A“ to denote respectively the set of all finite words, the set of all infinite
words formed using the letters of the alphabet A, and use A to denote the set A* U A“. Let X be a set and R C X x X be
a relation. For simplicity, let us assume that dom R:={zx € X |y € X . (z,y) € R} = X. For any given = € X, we use
the notation R(z) to denote the set {y € X | (z,y) € R}. We extend this notation to sets: For any given Z C X, we use the
notation R(Z) to denote the set U,czR(z). Given a set A, we use the notation Dist(A) to denote the set of all probability
distributions over A.

We denote the set of nonnegative integers by N := {0,1,2,...} and the set of integers in an interval by [a;b] == {a + k |
ke N, k <b—a}. We also use the symbols “E.,.,,” and “€,44” to denote memberships in the set of even and odd integers
within a given set of integers: For example, for a given set of natural numbers M C N, the notation n €.ye, M is equivalent
ton € MN{0,2,4,...}, and the notation n €,44 M is equivalent to n € M N{1,3,5,...}.

B. Controlled Markov Processes

A controlled Markov process (CMP) is a tuple & = (S,U,Ts), where S is a Borel space called the state space, U
is a finite set called the input space, and T is a conditional stochastic kernel Ts: B(S) x & x U — [0,1] with B(S)
being the Borel sigma-algebra on the state space and (S, B(S)) being the corresponding measurable space. The kernel 7T
assigns to any s e Sandu el a probability measure T;(:|s,u) on the measurable space (S,B(S)) so that for any set
A e B(S), P, = [, Ts(ds|s,u), where Py, denotes the conditional probability P(:|s,u).

In general the 1nput space U can be any Borel space and the set of valid inputs can be state dependent. While our results
can be extended to this setting, for ease of exposition, we consider the special case where U/ is a finite set and any input can be
taken at any state. This choice is motivated by the digital implementation of control policies with a finite number of possible
actuations.

The evolution of a CMP is as follows. For k € N, let X* denote the state at the k-th time step and A* the input chosen
at that time. If X* = s € S and A* = u € U, then the system moves to the next state X**!, according to the probability
distribution P ,,. Once the transition into the next state has occurred, a new input is chosen, and the process is repeated.

Given a CMP G, a finite path of length n + 1 is a sequence

w" = (s%s',...,5"), neEN,

where s’ € S are state coordinates of the path. The space of all paths of length n + 1 is denoted S™*1. An infinite path of
the CMP & is the sequence w = (s°, s, s2,...), where s° € S for all i € N. The space of all infinite paths is denoted by S¥.
The spaces S"*! and S are endowed with their respective product topologies and are Borel spaces.



A stationary control policy is a universally measurable function p : & — U such that at any time step n € N, the input u" is
taken to be p(s™) € U. As we only deal with stationary control policies in this paper, we simply refer to them as policies for
short. We denote the class of all such policies by II. The function p is also called state feedback controller in control theory.

For a CMP &, any policy p € II together with an initial probability measure « : B(S) — [0, 1] on the states induces a
unique probability measure on the canonical sample space of paths [19], denoted by P2 with the expectation EZ. In the case
when the initial probability measure is supported on a single state s € S, i.e., a(s) = 1, we write P? and E? in place of P?
and E?, respectively. We denote the set of probability measures on (S, B(S)) by D.

Given any w-regular specification ¢ defined using a set of predicates over the state space S of G, we use the notation
S = ¢ to denote the set of all paths of & which satisfy ¢. Thus, P?(& |= ¢) denotes the probability of satisfaction of ¢
by & under the effect of the control policy p, when the initial probability measure is given by a. Often we will use Linear
Temporal Logic (LTL) notation to express w-regular properties. The syntax and semantics of LTL can be found in standard
literature [2].

A stochastic dynamical system Y is described by a state evolution

sPT = f(sF,ub,¢F), keN, (1)

where s € S and u* € U are states and inputs for each k € N, and (s°,¢!,...) is assumed to be a sequence of independent
and identically distributed (i.i.d.) random variables representing a stochastic disturbance. The map f gives the next state as
a function of current state, current input, and the disturbance. One can construct a CMP over states S and inputs & from
(1) by noticing that for any given state s* and input u* at time &, the next state is a random variable defined as a function
of ¢*. Thus, Ty(-|s*,u*) is exactly the distribution of the random variable f(s*,u*, ¢¥) and can be computed based on the
distribution of ¢* and the map f itself [22].

C. Parity Specifications

Let 6 = (S,U,Ts) be a CMP and suppose P = (By, By, ..., By) is a partition of S with measurable sets By, ..., By; that
is, BN Bj = () for i # j and Uf_;B; = S. We allow some B;’s to be empty. For each B;, we call the integer i its priority.

Intuitively, an infinite path w € S“ satisfies the parity specification with respect to P if the highest subset B; visited
infinitely often has even priority. This specification is formalized in Linear Temporal Logic (LTL) notation [2] using the
following formula:

Parity(P) = /\ O0B; — \/ 0oB; | , )

1€ oad[13€] J € cven[i+13£]

which requires that infinitely many visits to an odd priority subset (OO B;) must imply infinitely many visits to a higher even
priority subset (JOB;). We indicate the set of all infinite paths w € S¥ of a CMP & that satisfy the property Parity(P) by
G |= Parity(P). The proof of measurability of the event & |= Parity(P) goes back to the work by Vardi [42] that provides
the proof for probabilistic finite state programs. The proof for a CMP follows similar principles, using the observation that
S | Parity(P) can be written as a Boolean combination of events & = [JO A, where A is a measurable set, and JOA is a
canonical G5 set in the Borel hierarchy.

It is well-known that every w-regular specification whose propositions range over measurable subsets of the state space of
a CMP can be modeled as a deterministic parity automaton [15, Thm. 1.19]. By taking a synchronized product of this parity
automaton with the CMP, we can obtain a product CMP and a parity specification over the product state space such that every
path satisfying the parity specification also satisfies the original w-regular specification and vice versa. Moreover, a stationary
policy for the parity objective gives a (possibly history-dependent) policy for the original specification. Thus, without loss of
generality, we assume that an w-regular objective is already given as a parity condition using a partition of the state space of
the system.

[1l. PROBLEM DEFINITION

We are interested in computing the maximal probability that a given parity specification can be satisfied by paths of a CMP
G starting from a particular state s € S under stationary policies. Given a control policy p € II and an initial state s € S, we
define the satisfaction probability and the supremum satisfaction probability as

f(s,p) = P{(& [= Parity(P)) and 3)
f7(s) = sup P{(6 |= Parity(P)), )
pell
respectively. An optimal control policy for the parity condition is a policy p* such that f*(s) = f(s, p*) for all s € S. Note that

an optimal policy need not exist, since the supremum may not be achieved by any policy. Our goal is to study the following
optimal policy synthesis problem.



Problem 1 (Optimal Policy Synthesis): Given & and a parity specification Parity(P), find an optimal control policy p*, if
it exists, together with f*(s) such that P?" (& k= Parity(P)) = f*(s).

While the satisfaction probability (3) and the supremum satisfaction probability (4) are both well-defined, we are not aware
of any work characterizing necessary or sufficient conditions for existence of optimal control policies on continuous-space
CMPs for parity specifications. Additionally, we restrict attention to stationary policies. While it is possible to define more
general classes of policies, that depend on the entire history and use randomization over I/, we are again unaware of any work
that characterizes the class of policies that are sufficient for optimal control of CMPs for parity specifications. For finite-state
systems, stationary policies are sufficient and we restrict attention to them.

Since we cannot prove existence or computability of optimal policies, in this paper, we focus on providing an approximation
procedure to compute a possibly sub-optimal control policy and guaranteed lower bounds on the optimal satisfaction probability.
Our procedure relies on first approximating almost sure winning regions (i.e., where the specification can be satisfied with
probability one), and then solving a reachability problem, as formalized next.

Definition 3.1 (Almost sure winning region): Given a CMP &, a policy p, and a parity specification Parity(P), the state
s € S satisfies the specification almost surely if f(s, p) = 1. The almost sure winning region—or simply the winning region—of
the policy p is defined as

WinDom (&, p) :=={s € S| f(s,p) = 1}. (5)

We also define the maximal almost sure winning region—or simply the maximal winning region—as

WinDom*(6) :={s € S| f*(s) = 1}. (6)

Note that WinDom(&, p) € WinDom™(&) for any control policy p € II. It is clear by definition of the winning region

that for any policy p, the satisfaction probability P?(& = Parity(P)) is equal to 1 for any s in the winning region W :=

WinDom(&, p). The next theorem states that this satisfaction probability is lower bounded by the probability of reaching the

winning region W for any s ¢ W. We denote such a reachability by (& = OW) := {w = (s°,s',5%,...) | In e N.s" € W}.
Theorem 3.2: For any control policy p € IT on CMP &, and W := WinDom(&, p), we have

PP(6 = Parity(P)) =1 if s€ W and 7
P?(& | Parity(P)) > PP(S = OW) if s ¢ W.

The proof can be found in the appendix. The inequality in the second part of (7) is because the Parity(P) specification
may be satisfied with positive probability even though the path always stays outside of W. When the state space is finite (i.e.,
for finite Markov decision processes), equality holds [2]. However, equality need not hold for general CMPs: Majumdar et
al. [30] showed an example where the maximal almost sure winning region is empty even though a Biichi specification is
satisfied with positive probability.

The next theorem establishes that for any policy p, the winning region is an absorbing set, i.e., paths starting from this set
will stay in the set almost surely.

Theorem 3.3: For any control policy p, The set W = WinDom(&, p) is an absorbing set, i.e., Ts(W|s, p(s)) = 1 for all
s € W. This implies P?(S = OS\W) =0 for all s € W.

The proof of this theorem utilizes the fact that Parity(P) is a long-run property and its satisfaction is independent of the
prefix of a path. The proof is provided in the appendix.

Notice that Thm. 3.2 and Thm. 3.3 are stated for any fixed control policy p, but these theorems enable us to decompose
the maximization of P?(& = Parity(P)) with respect to p into two sub-problems. First, find a policy that gives the largest
winning region W and employ that policy when the current state is in . Then, find a policy that maximizes the reachability
probability P?(S = OW) and employ that policy as long as the current state is not in W.

Computation of the reachability probability has been studied extensively in the literature for both infinite horizon [16], [17],
[40], [41] and finite horizon [21], [23], [25]-[27], [34]-[36], [43] using different abstract models and computational methods.
Together with an algorithm that underapproximates the region of almost sure satisfaction, these approaches can be used to
provide a lower bound on the probability of satisfaction of the parity condition. In the rest of the paper, we focus on the
following problem (the first half of (7)).

Problem 2 (Approximate Maximal Winning Region): Given & and a parity specification Parity(P), find a (sub-optimal)
control policy p € II, its winning region WinDom(&, p) # 0, and a bound on the absolute volume of the set difference
WinDom™(&)\WinDom(&, p), which we call the approximation error.

In Sec. IV-V, we provide a solution for Prob. 2 via the paradigm of abstraction-based controller design. Not surprisingly, we
get a tighter (i.e., larger) approximation of WinDom* (&) if we use a finer discretization of the state space during the abstraction
step. We also provide an over-approximation of WinDom* (&), and show closeness of the under- and over-approximation of
WinDom™(&) in the numerical example provided in Sec. VI.

V. ABSTRACTION-BASED POLICY SYNTHESIS

The main result of our paper is a solution to Prob. 2 via a symbolic algorithm over abstract 21 /2-player games in the spirit of
abstraction-based controller design (ABCD). ABCD is typically used to compute temporal-logic controllers for non-stochastic



nonlinear dynamical systems [31], [33], [38] in two steps. First, the system is abstracted into an abstract finite-state two-player
game. This game is then used to synthesize a discrete controller which is then refined into a continuous controller for the
original system. In standard ABCD techniques, the abstract game has two players: Player 0 simulating the controller and
choosing the next control input u based on the currently observed abstract state s, and Player 1 simulating the adversarial
effect of (a) choosing any continuous state s in S to which u is applied and (b) choosing any continuous disturbance d that
effects the resulting transition.

The key insight in our abstraction step is that the stochastic nature of the underlying CMP allows choosing disturbances in
a fair random way instead of purely adversarially. We model this by introducing an additional random player (also called %
player) resulting in a so called 21/2-player game [4]-[6]. In the resulting abstract game, only the effect of the discretization is
handled by Player 1 in an adversarial manner. The random player picks the applied disturbance uniformly at random.

After introducing necessary preliminaries on 21/2-player games in Sec. IV-A, we show how a CMP can be abstracted into
a 21/2-player game in Sec. IV-B. We then recall in Sec. IV-C a symbolic procedure to find winning regions in 21/2-player
games for parity specifications. Finally, we state in Sec. IV-D how an almost-sure winning strategy in the abstract 21/2-player
game is refined, and that the resulting control policy is almost sure winning for the original CMP and its associated parity
specification. This establishes soundness of our ABCD technique to solve Problem 2.

A. Preliminaries: 21/2-Player Parity Games

A 21/>-player game graph is a tuple G = (V. E,(Vy,V1,V,.)), where V is a finite set of vertices, F is a set of directed
edges E C V x V, and the sets Vp, V3, V, form a partition of the set V. A 21/2-player parity game is a pair (G, P), where
G is a 21/2-player game graph, and P = (By, By, ..., By) is a tuple of ¢ disjoint subsets of V', some of which can possibly
be empty. The tuple P induces the parity specification Parity(P) over the set of vertices V' in the natural way. In order to
ensure that Parity(P) is well defined, we impose the restriction that every infinite run must have infinitely many occurrences
of vertices from at least one of the nonempty sets in P. In other words, we require that every set of vertices U C V' for which
there is no ¢ € [1;¢] with U N B; # () must be “transient” vertices.

The players and their strategies. We assume that there are two players Player 0 and Player 1, who are playing a game by
moving a token along the edges of the game graph G. In every step, if the token is located in a vertex in Vj or Vi, Player 0 or
Player 1 respectively moves the token to one of the successors according to the edge relation E. On the other hand, if the token
is located in a vertex v € V., then in the next step the token moves to a vertex v’ which is chosen uniformly at random from the
set E(v). Strategies of Player 0 and Player 1 are respectively the functions 7g: V*Vy — Dist(V) and 7y : V*V} — Dist(V)
such that for all w € V*, vy € V) and v1 € V4, we have supp mo(wvg) C FE(vg) and supp 71 (wvy) C E(vy). We use the
notation Il and II; to denote the set of all strategies of Player 0 and Player 1 respectively. A strategy m; of Player i, for
1 € {0,1}, is deterministic memoryless if for every wq,ws € V* and for every v € V;, m;(wiv) = m;(wov) holds; we simply
write 7;(v) in this case. We use the notation IIPM to denote the set of all deterministic memoryless strategies of Player i.
Observe that IIPM C T1,.

Runs and winning conditions. An infinite (finite) run of the game graph G, compatible with the strategies 7y € Il and
w1 € IIy, is an infinite (a finite) sequence of vertices r = v’v'v?... (r = v"...v" for some n € N) such that for every
k € N, (a) v¥ € V; implies v**1 € supp mo(v°...v¥), (b) v* € V; implies v¥*1 € supp 71 (v°... %), and (c) v* € V.
implies v**! € E(v*). Given an initial vertex v° and a fixed pair of strategies 7 € Iy and 7; € II;, we obtain a probability
distribution over the set of infinite runs of the system. For a measurable set of runs R C V“, we use the notation P """ (R) to
denote the probability of obtaining the set of runs R when the initial vertex is v° and the strategies of Player 0 and Player 1
are fixed to respectively 7y and ;. For an w-regular specification ¢, defined using a predicate over the set of vertices of G, we
write (G |= ) to denote the set of all infinite runs for all possible strategies of Player 0 and Player 1 which satisfy ¢. For
example, (G |= Parity(P)) denotes the set of all infinite runs for all possible strategies of Player 0 and Player 1 which satisfy
the parity condition Parity(P). We say that Player 0 wins Parity(P) almost surely from a vertex v € V' (or v is almost sure
winning for Player 0) if Player 0 has a strategy 7y € Il such that for all m; € II; we have PJ™ (G = Parity(P)) = 1.
We collect all vertices for which this is true in the almost sure winning region W(G = Parity(P)).

B. Abstraction: CMPs to 21/2-Player Games

Given a CMP & = (S,U,T;) and a parity specification Parity(P) for a partition P of the state space S we construct an
abstract 21/2-player game.
State-space abstraction. We introduce a finite partition S = {Si}ics such that U5, = S, 5; # 0 and 5;N'S; = O for every
5,8 € S with i # j. Furthermore, we assume that the partition S is consistent with the given priorities P, i.e., for every
partition element § € S, , and for every =,y € s, « and y belong to the same partition _element in P (i.e.,  and y are assigned
the same priority). We call the set S the abstract state space and each element s € S an abstract state.

We introduce the abstraction function Q: § — S as a mapping from the continuous to the abstract states: For every s € S,
Q: s — 5 such that s € 5. We define the concretization function as the inverse of the abstraction function: Q~': & — 25,



Q7 1: 5 {s € S| s €5} We generalize the use of @ and Q™' to sets of states: For every U C S, Q(U) = User Q(s),
and for every U C S, Q7' (U) = U;.5 Q7' (5).

Transition abstraction. We also introduce an over- and an under-approximation of the probabilistic transitions of the CMP &
using the non-deterministic abstract transition functions F': S x U — 2° and F: S x U — 25 with the following properties:

FGu) D{5e8|3se5.Ty(5 | s,u) >0}, (8a)
FGu) C{7e8|I>0.Vse5.To(3 | s,u) >c). (8b)

To understand the need for both ' and F and the way they are constructed, consider the following example. Intuitively,
given an abstract state § and an input u, the set F over-approximates the set of abstract states reachable by probabilistic
transitions from § on input w. On the other hand, F under-approximates those abstract states which can be reached by every
state in s with probability bounded away from zero.

Example 4.1: Consider the two CMPs, G 4 and Gp:

The circles are concrete states s;, the dashed boxes denote abstract states S;, and the edges denote transitions with positive
probability between concrete states s;. Consider the left abstract state 57. Here, the adversary decides which concrete state
(i.e., s; or sg) the game is in. In both &4 and Gp, F says that both 57 and S are reachable from 3;. In & 4, F contains
both 51 and 3y, in &, F is empty. An adversary that plays according to F is too strong: it can keep playing the self loop in
s2, while the stochastic nature of the CMP ensures that eventually s, will transition to s3. In order to follow the probabilistic
semantics, we must ensure the adversary picks a distribution whose support contains both abstract states.

In &, the probabilistic behavior of the two concrete states s, and s are very different: s; stays in s; with probability one
and s, stays in §; or moves probabilistically to $5. To ensure correct behavior, we look at possible supports of distributions
induced by the dynamics: these are the possible subsets of abstract states between F and F. Here, the game either stays in 5
or (eventually) moves to 53 and, in our reduction, we force the adversary to commit to one of the two options. B

The parameter ¢ states that there is a uniform lower bound on transition probabilities for all states in an abstract state. This
ensures that, provided 5 is visited infinitely often and w is applied infinitely often from s, then 5" will be reached almost surely
from 5. In the absence of a uniform lower bound, this property need not hold for infinite state systems; for example, if the
probability converges to zero, the probability of escaping s can be strictly less than one.

Algorithmic computation of F' and F. While it is difficult to compute F' and F in general, they can be approximated for
the important subclass of stochastic nonlinear systems with affine disturbances

s = f(sF uF)+ <%, keN,

where ¢, ¢!, ... are independent and identically distributed ‘random variables from a distribution with a bounded support D,
and we assume we are only interested in a compact region S’ of the state space. In this case, for any abstract state § and any
u € U, one can compute an approximation ReachSet(s,u) with ReachSet(s,u) 2 {s' € S | Is € 5. f(s,u) = s’} using
standard techniques [1], [7], [33]. Define Sy, S3: 2% x U — 2° such that

S1: (5,u) = D & ReachSet(8, u),
Sz (5,u) — D © (—ReachSet (s, u)),

where the minus sign (— ReachSet (s, u)) is applied to each individual element of ReachSet(s,u) and @ and © are Minkowski
sum and difference, respectively. Using S; and S,, the functions F(-,-) and F(-,-) can be computed as [30, Thm. 6.1]: (1)
5 € F(5,u) iff either Sy(5,u) C 8" and 3 N S1(3,u) # 0 or S1(5,u) € S” and ¥ is a special sink state; and (2) 3’ € F(5,u)
iff either A(3' N S2(S,u)) > 0 or A(S2(S,u) \ &’) > 0 and § is a special sink state, and where A(-) denotes the Lebesgue
measure (generalized volume) of a set.

Remark 1: We remark that standard algorithms [7], [33] for computing ReaAchSet(~, -), including the one that is used in our
implementation, have the following monotonicity property: For every 5,5 € S and for every u € U, if 5 C & then

ReachSet(s,u) C ReachSet(s',u).

Monotonicity of ReachSet(-,-) implies F(-,-) and F(-,-) are monotone: For every 5,5' € S and for every u € U, if § C &
then

F(3,u) C F(5,u) and F(5u) D E(E ). )
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Fig. 1: Ilustration of the construction of the abstract 21 /2-player game (right) from a continuous-state CMP (left). The state
space of the CMP is discretized into rectangular abstract states Al,...,D3; F(A2,u) = {C2,C3} (intersecting the green
region), and F(A2,u) = {C1,C2,C3,C4} (intersecting orange region). Vy, V4 and V;, are indicated by circle, rectangular
and diamond-shaped nodes. Random vertices are dashed.

This property ensures that we get a better (i.e., larger) approximation of the optimal almost sure winning domain WinDom™ (&)
in problem 2 if we use a finer discretization of the state space during the abstraction step. This observation can be empirically
confirmed from the experiments in Sec. VI.

Abstract 21/2-player game graph. Given the abstract state space S and the over and under-approximations of the transition
functions F and F, we are ready to construct the abstract 21/2-player game graph induced by a CMP.

Definition 4.2: Let & be a given CMP. Then its induced abstract 21/2-player game graph is given by G = (V, E, (Vy, V1, V;.))
such that

o Vo= §andV1 §><U;

o Vi=U,en, Vo ( 1), wWhere

Vi(o1)i={0, €8 | E(v1) Co, CF(vn), 1< oy | < [E(v1)|+1};
¢ and it holds that

o for all vy € Vp, E(vo) = {(vo,u) | u € U}

o for all v; € V4, E(v1) = V,.(v1), and

o forall v, € V., E(v.) = {vo € Vo | vo € v,-}.

Note that V,.(v1) contains non-empty subsets of S that includes all the abstract states in F(v1) and possibly include only
one additional element from F'(vy). The construction is illustrated in Fig. 1.

In the reduced game, Player 0 models the controller, Player 1 models the effect of discretization of the state space of S,
and the random edges from the states in V. model the stochastic nature of the transitions of &. Intuitively, the game graph
in Def. 4.2 captures the following interplay which is illustrated in Fig. 1: At every time step, the control policy for G has to
choose a control input v € U based on the current vertex S of G. Since the control policy is oblivious to the precise continuous
state s € S of &, hence u is required to be an optimal choice for every continuous state s € 5. This requirement is materialized
by introducing a fictitious adversary (i.e. Player 1) who, given § and u, picks a continuous state s € 5 from which the control
input w is to be applied. Now, we know that no matter what continuous s is chosen by Player 1, T,(E(5,u) | s,u) > €
holds for some £ > 0. This explains why every successor of the (S,u) € V; states contains the set of vertices F(§,u).
Moreover, depending on which exact s € § Player 1 chooses, with positive probability the system might go to some state in
F(3,u) \ E(3,u). This is materialized by adding every state in F'(3,u) \ F(5,u) at a time to the successors of the states in
V1 (see Def. 4.2). Finally, we assume that the successor from every state in V. is chosen uniformly at random (indicated by
dotted edges in Def. 4.2). Later, it will be evident that the exact probability values are never used for obtaining the almost
sure winning region, and so we could have chosen any other probability distribution.

Abstract parity specification. To conclude the abstraction of a given CMP & and its parity specification P = {By, ..., By},
we have to formally translate the priority sets B; defined over subsets of states of the CMP into a partition of the vertices of
the abstract 2!/2-player game graph G induced by &. To this end, recall that we have assumed that the state space abstraction
S respects the priority set P.

Definition 4.3: Let & be a CMP with parity specification Pamty( ) and G the abstract 21/2 -player game graph induced by
S. Then the induced abstract parity specification P = {By, ..., B} is defined such that B; = {vy € Vo | Q*(vo) C B} for
all 7 € [0;¢]. We denote the resulting 2!/2-player parity game by the tuple (G, P).

We note that the choice of the abstract parity set P does not partition the state space. Indeed, we implicitly assign an
“undefined” color “—” to all nodes V7 U V,.. Thereby, we only interpret the given parity specification over a projection of a
run to its player 0 nodes. Formally, a run r over the abstract game graph G starting from a vertex s” € Vj is of the form:

7"2507(507 uo),({so’o, . ,so’io})7sl, (sl,ul),({sl’o, . ,Sl’il}), .

where s* € {s"0, ... s} for all k € N. The projection of the run r to the Player 0 states is defined as Projy, (r) =

5%, s .... Let ¢ be an w-regular specification defined using a set of predicates over V. We use the convention that (G |= ¢)

will denote the set of every infinite run r of G, for any arbitrary pair of strategies of Player 0 and Player 1, such that



Projy, (r) satisfies . This convention is well-defined because every infinite run of G will have infinitely many occurrences of
vertices from Vj in it: This follows from the strict alternation of the vertices in Vj, Vi, and V,., as per Def. 4.2.

C. Abstract Controller Synthesis

Once the 21/2-player parity game (G ,73> is constructed from the CMP & according to Def. 4.2, one can use existing
techniques to compute the almost-sure winning states of Player 0 along with an associated almost-sure Player 0 winning
policy p over <Q,A ‘P). The best-known algorithm is due to Chatterjee, Jurdzinski and Henzinger [5]. It first converts a 21 /2-player
parity game (G, P) into a two-player parity game and then uses well-known symbolic fixed-point algorithms [13], [28] to solve
the latter game. The resulting Player 0 winning strategy p for the two-player game is known to be memoryless. Further, the
same strategy constitutes a deterministic memoryless almost-sure Player 0 winning policy in the original 21/2-player game [5].
This implies that 21/2-player parity games are determined (from 2-player games being determined); that is, from every vertex,
either Player 0 has a deterministic memoryless strategy to win almost surely, or Player 1 has a deterministic memoryless
strategy to win with positive proability bounded away from zero [5, Thm. 2].

D. Controller Refinement

Now consider that the abstract 21/2-player parity game (G, P} constructed from the CMP & via Def. 4.2 and Def. 4.3 has
been solved as discussed in Sec. IV-C. Hence, we know the almost-sure Player 0 winning region W(G |= Pamty(P)) and the
associated deterministic memoryless almost-sure Player 0 winning policy mo € II°PM. Then we refine 7 to a control policy
p € II for the CMP & under parity condition Parity(P) as follows. R

Definition 4.4: Let & be a CMP with parity specification Parity(P) and (G, P) its induced finite 21/2-player parity game
with deterministic memoryless almost sure Player 0 winning strategy mo € IIPM . Then the control policy p € II is called the
refinement of mo if and only if for every s € S, if s € § for some § € S, and if 7y(s) = (5,u) € V4 for some u € U, then
p(s) = u.

With the completion of this last step of our ABCD method for stochastic nonlinear systems we can finally state our main
theorem providing a solution to Problem 2, which we prove in Sec. V. N

Theorem 4.5 (Solution of Problem 2): Let & be a CMP and Parity(P) be a given parity specification. Let (G, P) be the
abstract 21/2-player game defined in Def. 4.2. Suppose, a vertex 5§ € Vj is almost sure winning for Player 0 in the game (G, P),
and 7y € II°M is the corresponding Player 0 winning strategy. Then the refinement p of 7o ensures that § C WinDom(&, p).

Remark 2: An over-approximation of the optimal almost sure winning domain WinDom* (&) of & w.r.t. Parity(P) can
be computed via (G, ﬁ) as well. To obtain an over-approximation, we solve this abstract game cooperatively. That is, we let
player Player 0 choose both its own moves and the moves of player p; to win almost surely with respect to Parity(P). Then
the approximation error of Problem 2 can be upper-bounded as the Lebesgue measure of the set difference of the over- and
the under-approximation, as will be done for the experiments in Sec. VL.

V. PROOF OF THEOREM 4.5

Proof outline. To prove Thm. 4.5, we first decompose both the original and the abstract parity specifications Parity(P) and
Parity(P) into a combination of more manageable safety and reachability sub-parts. That is, for every state reachable by a
finite run in &, we consider a local safety specification i) and a local reachability specification ¥ i defined by

g :=0=B; and g := ¢ (1/)5 V'V e pnlit 14 Bj) ' o

Intuitively, 1) requires that every time an odd priority—say B;—is visited in &, eventually either B; should never occur or an
even priority B; with j >4 should occur, almost surely. Similarly, for the abstract 21 /2-player parity game (G, P) we consider
the local safety specification 1/13 and a local reachability specification 1/1 r defined by

7/15 = D—|B¢ and 1/1R =9 (1/)5 N vjewen[i“%k] Bj) ’ .

While the above decomposition needs to be established both for G and for &, the directions of the respective proof differ.
For & we show that if ¢)r holds for a state reachable by a finite run over &, then the original specification Parity(P) is
satisfied by a continuation of the run using the refined policy p (Step 1). For G we show that if Parzty(P) is satisfied, then
wR holds for every state visited by a run compatible with the almost-sure winning strategy mo in (G, P> (Step 2). Further,
we show that satisfaction of 1/)5 (resp. 1/13) in G implies satisfaction of g (resp. ¥g) in & (Step 3-5). With this, we have all
ingredients to prove Thm. 4.5 (Step 6).

Step 1: Decomposition of Parity(P). We prove a sufficient condition for satisfaction of Parity(P) in & if 1)r holds.

Lemma 5.1: Let G be a CMP, Parity(P) be a parity specification, s° € S be a given initial state, and p be a control policy.
Suppose the following holds for every finite path (s°,...,s") € S"™! of G and every i €44 [1;k]:

s" € B; = Ph (6 =) = 1. (12)



Then P (S = Parity(P)) = 1.

Proof: [Proof of Lem. 5.1] Define for any arbitrary i €,q44 [1;k] the event F; = (& [ ;) with the specification
P (I:IOB Ve lit1:k] D(}Bj). We want to show that P%,(& |= Parity(P)) = P4 (), Ei) = 1 where i €oq4q [1; k].
We prove this by showing P7, (E;) = 0 for every i €,4q [1;k]. Once we show this, the result follows according to the standard
inequalities:

PG (M Ei) =1- P4 (U; Bi) 21 -3, Ph (Ei) =1
where P4, (E;) = P4 ((6 = 00B;) N (6 = A;00-B;)),

with i €,44 [1;k] and j €epen [¢ + 1; k]. Define the random variable 7 to be the largest time instance when the trajectory
visits one of the sets B;. Also define 7/ > 7 to be the first time instance after 7 when the trajectory visits B, again. Note that
for any trajectory satisfying JOB; and A;O0-B;, both 7 and 7" are well-defined and bounded. According to the assumption
(12), we have

PL(E; |7 =n,s" s 8"

= P& (6 EO0Bi) N (6 = A;00-B;)) =

By taking the expectation with respect to the condition (7/,s°,--- ,s™), we conclude that

PfU(E ) EP [ngﬂ(E|T/ =n, 807 Sla e 7Sn)] :EQ)O[O]:O,
i.e., B; has a zero probability. [ ]
Step 2: Decomposition of Pamty(P) We present a necessary condition for satisfaction of Parity(P ) ing 1f w r holds.
Lemma 5.2: Let (G, P) be a 21/2-player parlty game, and v° be a given vertex of g Suppose 7§ € TIZM is a Player 0
pro™ (Q = Parzty(P)) = 1. Then given every finite path v°...v™ € V* such that there exists a

00

Player 1 strategy m; € II; with PTFO’771 (G =v°...v™) > 0, the following holds for every i €44 [1;k]:

strategy such that inf, cr, P

v" € By = inf PO (g = <>¢R) —1. (13)
w1 €1l
The only new factor in Eq. (13) is the presence of the édversarlal effect of the Player 1 strategies.

Proof: It follows from the definition of the parity specification in (2) that a vertex v € V is almost sure winning using
the strategy 7 if the following condition is fulfilled:

inf,, cq, P (g = Mot (E = owR)) ~ 1 (14)
From the semantics of LTL, (14) implies:
infr,en, P (G = A ¥m e N. (o™ € By) = 00r) =1, (1s)

with i €,44 [1;k]. We show that (15) implies for every finite run v°...v" € V*, occurring with a positive probability

p1 > 0 for some strategy of Player 1, (13) holds. Suppose for contradiction’s sake, there exists some i €,4q [1;k] such
7707771

that v® € B; and (13) does not hold, i.e., infr, em, Py (g = OwR) < 1, implying existence of some 0 < p; < 1

with sup,. ¢, ;TT? o (g O R) = po. This results in satisfaction of the parity specification with a probability of ar most

(1 — p1 - p2) < 1, contradicting (15). -

Step 3: Refinement of 125 to 1s. We show that almost sure safety with respect to a given set U in G implies the same with
respect to the set Q~!(U) in &; this will later be used to infer 1g = 1g.

Proposition 5.3: Let G be a CMP and G be a finite 21/2-player game graph as defined in Def. 4.2. Suppose U C Vj is
a given set of vertices of G, and assume that there is a Player 0 vertex v € U for which there is a strategy 7o € IIPM of
Player 0 such that inf, ¢, PTo™ (G = OU) = 1. Then the refinement p € II of 7 ensures that for every state s € v,
P& = 0QH(U)) = 1.

Proof: It is known that for safety properties, almost sure satisfaction coincides with sure satisfaction, i.e.,
infr, er, PTo™ (G = OU) = 1 if and only if for every strategy 7, € IIj, every infinite run of G stays inside U at all time [10].
In other words, there must be a controlled invariant set W inside U for the strategy 7, and v € W. This controlled invariant
set can be obtained by considering the 2-player game, obtained from G by removing all the random vertices, and redirecting
the outgoing transitions of a given Player 1 vertex v’ € V; to the Player 0 vertices within the set F'(v', mo(v")) C V. Since
F(v',mo(v")) overapproximates the set of all the continuous states reachable from v’ using the input 7o (v’), hence if Player 0
can fulfill OU using the strategy mo(v’), then p can fulfill JQ ! (U) from every state s € v' in &. (This follows from the
standard arguments in abstraction-based control using over-approximation based abstractions [33].) [ ]

Step 4: Refinement of 1Z R to 1r. We show that almost sure reachability with respect to a given set U in G implies the same
with respect to the set Q1 (U) in &; this will be used to infer g = Y g.



Let & be a CMP. Let us consider a reachability specification QU, for a set U C V{, in the game G defined in Def. 4.2.
Suppose 7o € IIPM is some strategy of Player 0.

We introduce a ranking function r: V5 — NU {oo} as a certificate for almost sure satisfaction of the specification QU. The
ranking function r is defined inductively as follows:

0 veU,

oo infrem PFO™(G EOQU) <1,

i+ 1 min{n € N|inf,, e, P7o™(G = Or—1(n)) >0}
=i Ainfr, e, PF™(G = Or=1(c0)) = 1.

r(v)= (16)

Note that every vertex v € V' gets a rank: If r(v) # oo, then inf, crr, Pro™ (G = QU) = 1 by definition of r. In this case,
there must exist some path to U, i.e., inf,, err, PT0™ (G £ Or~1(cc0)) = 1 must be true, and moreover inf,, crr, P70 ™ (G =
Or=1(n)) > 0 will be true for some n. Thus, r(v) = n + 1.

From the ranking function 7(-) defined in (16), it is clear that inf., e, Py ™ (G = QU) = 1 implies 7(v) # oco. We first
identify some local structural properties of the abstract transition functions F' and F' evaluated on some abstract states with

finite ranking.

_ Lemma 5.4: Suppose 1 € M is some strategy of Player 0. For every v € Vi with r(v) = i # oo, i > 0, both
F(v,mo(v)) N7~ (c0) = 0 and either of the following holds:

1) F(v,mo(v))Nr=t(i—1) #0, or

2) F(v,mo(v)) =0 and F(v,mo(v)) Cr~1(i —1).

Proof: Firstly, F(v,m(v)) Nr~1(c0) = () should always hold as otherwise Player 1 would have a strategy to reach a
state in 71 (0o) with nonzero probability in the next step.

Suppose (2) does not hold, implying either (a) F'(v,mo(v)) # 0, or (b) the existence of a vertex v/ € F(v,my(v)) with
r(v') # i — 1. Then F(v,mo(v)) Nr~1(i — 1) # O must hold, as otherwise, for case (a) and (b) Player 1 would have
strategies 71 with 71 (v, 79 (v)) = (F (v, m(v))) and 71 (v, m(v)) = (F(v, mo(v)) U {v'}) respectively, such that PTo™ (G |=
Or(i-1))=0.

On the other hand, suppose (1) does not hold. Then F (v, mo(v)) = () must be true, as otherwise Player 1 would have a
strategy 71 with 71 (v, mo(v)) = (£ (v, 7 (v))) such that Po™ (G = Or~1(i — 1)) = 0. Moreover, F(v, m(v)) C r=1(i — 1)
must also be true, as otherwise there would exist a vertex v’ € F (v, mo(v)) with r(v') # i — 1, and Player 1 would have a
strategy 71 with 71 (v, w0 (v)) = (E (v, m0(v)) U {v'}) = ({v'}) such that PTo™ (G = Or~1(i — 1)) = 0. |

The following lemma establishes soundness of the reduction with respect to reachability specifications.

Proposition 5.5: Let G be a CMP and G be a finite 21/2-player game graph as defined in Def. 4.2. Suppose there is a
Player 0 vertex v € V) in G and a set of vertices U C Vj for which there is a strategy 7y € HODM of Player 0 such that
inf,, er, PT™ (G |= OU) = 1. Then the refinement p € II of 7o ensures that for every state s € v, P?(& = 0Q~}(U)) = 1.

Proof: 1t follows from the definition of the ranking function in (16) that the set of almost sure winning vertices for the
specification QU is given by all the vertices with finite rank. We show that for every vertex v with a finite rank, the refinement
p € 11 of 7y ensures that from every state s € v, P?(& = 0Q~1(U)) = 1.

First, trajectories starting from any state s € v with 7(v) # oo never go to the region @~ !(r~1(oc0)). This follows from the
identity F'(v, mo(v))Nr~1(c0) = () in Lem. 5.4 and because F'(v, m(v)) is an overapproximation of the one step reachable set
from the states within vertex v. Hence, every infinite trajectory of & starting from s will visit the states in S\ Q7 (r~!(c0))
infinitely often.

The rest of the proof shows that if a trajectory visits the states S \ Q~!(r~!(oo) U 771(0)) infinitely often, then the
trajectory will almost surely satisfy 0Q~1(r=1(0)) = 0Q~1(U). The is by induction over the largest rank assigned by r. For
the base case, let the largest rank assigned by r be 2. We show that every state s € S starting from inside a vertex v with
r(v) =1 or 7(v) = 2 will almost surely reach Q~1(U), i.e., P?(& = OQ~(r~1(1) Ur~1(2))) = 0. Note that the events
{00Q 1 (r=1(2))} and {J0Q 1 (r~1(1))} form a partition of the event of {JQ~'(r~1(1) Ur~1(2))}. Therefore,

PYG FOQT (r (1) Ur™ ()))
= PG FOQ™ (r (1) Ur™(2) A0OQ™ (r™1(2)))
+P(6 FOQT (r (1)U 7“_1(2)) ADOQ™H(r™H (1))

The first term is upper bounded by P?(& = 0OQ ! (r~1(2))) which is zero, because P*(& = 0Q*(r=1(2))) =172, (1—
€)™ = 0. The second term is also zero because the event requires the number of transitions from Q~*(r~1(1)) to be infinite.



To see this, let 4, = (ig, %1, ...,%,) be the first (n + 1) time instances that a trajectory visits Q~1(r~1(1)). Then,

PYG EOQ (r (1) Ur 1 (2) ADOQT(r 71 (1))) =
ZPP FOQ™ (r ' (M)Ur™H (2)ADOQ ™! (r™ 1 (1)) |n) PL (in)

<Z )" PP (i) = (1 — )™

The last inequality is due to either Cond. (1) or Cond. (2) of Lem. 5.4 applied to the vertices in v € »~1(1). Note that this
inequality holds for any n. By taking the limit when n goes to infinity, we have that this second term is also zero. Hence the
base case is established.

For the induction hypothesis, assume that the claim holds when the maximum rank assigned by the function 7 is 7. Then
for the induction step, i.e., when the maximum rank is ¢ + 1, we can follow same argument, as we did for the states with
rank 2 in the base case, to show that every infinite trajectory inside S\ Q!(r~!(oc0) Ur~1(0)) will never get trapped inside
Q~(r~'(i+1)), which will mean that the trajectory will visit the states in S\ Q= (r~!(co) Ur~=1(0)Ur~1(i + 1)) infinitely
often. Then it follows from the induction hypothesis that the trajectories will reach Q~1(U) almost surely. [ ]

Step 5: Refinement of runs. We show that every finite path in & can be mapped to a positive probability finite run in G;
this will be used establish a bridge from the universal quantification over finite paths in & to the universal quantification over
finite runs in G.

Lemma 5.6: Let & be a CMP, G be the abstract game graph as defined in Def. 4.2, my € IIP™ be an arbitrary Player 0
strategy in the game G, and s € S be a state of G. Suppose p € II is the refinement of m. Then for every finite trajectory
s9...s" €S of & m the support of the distribution P , there exists a Player 1 strategy m; € II; such that P;O"m (G E
50...3") > 0, where §° Q( %) for every i € [0;n].

Proof The initial state s° € 3%, and for every 0 < i < n, from the definition of F it follows that 5'7! € F(5%, mo(5%)).
Thus, from every Player 1 vertex (s mo(5%)), there is a successor vertex in V,. whose successor is 5°*1. Hence, for every

0 < i < n, there is some move of Player 1 which causes a transition to 5'T! with some positive probability p’. Then
PG ES...5") =[]y p' > 0. ]

Step 6: The final assembly of the proof. Finally, we finish the proof of Thm. 4.5 by stitching everything together. It is known
that memoryless strategies suffice for winning almost surely in 21/2-player parity games [45]. Let m; € 1M be the witness
strategy of Player 0 to almost surely win from the vertex * in the game (G, P), and p* be the refinement of 7j;. We claim
that s C WinDom(&, p*).

We will show that for every finite path of & starting within s* and ending in some odd priority state B;, eventually either
B; will not be visited any more, or a state of higher even color will be visited. Then the claim will follow from Lem. 5.1.

We know from Lem. 5.6 that existence of a finite path s°...s™ of & implies existence of an abstract run s 30...3" such that
sup, e, P ™ (G E 50...3") > 0. Moreover, due to the priority preserving partitions we have 5" € B, Where 7 is odd.

Since 7§ is an almost sure winning strategy, hence, by using Lem. 5.2, we know that the following holds:

inf Pf,? o (g =0 (DﬁB VUje s By )) (17)

w1 €11

From Prop. 5.3, we know that the set of abstract states from which the specification Dﬂéi is satisfied (almost) surely using
the strategy 7§ are also the set of continuous states from which the specification [J-B; is satisfied almost surely using the
controller p*. Together with Prop. 5.5 and Lem. 5.1, we can infer Thm. 4.5 from (17).

VI. NUMERICAL EXAMPLE

We consider the controller synthesis problems for a two-dimensional stochastic bistable switch with a couple of different
parity specifications; the examples have been adopted, mutatis mutandis, from the work of Dutreix et al. [12]. The dynamics
of the system is modeled by the following difference equations:

sf“zs’f—i—(—a-s’f—l—s’;)-T—&—u]f—i—gf (18)
k 2
S
it = s+ (st i, (19)
(sh)"+1

where s1, sy are the state variables, w1, us are the control inputs, a,b are constant parameters, 7 is the sampling time, and
G1,2 are stochastic noises. We assume that the domain of the state variables is [0.0,4.0] x [0.0,4.0], and we saturate the
state trajectories at the boundary of the domain. We consider a finite set of values for both of the control inputs: for every
k, u¥,u5 € {—0.05,0.0,0.05}. The values of the constants are given by: a = 1.3, b = 0.25, and 7 = 0.05. Finally, we



assume that the stochastic noise samples (¥, c¥) are drawn from a piecewise continuous density function with the support
D =[-0.4,-0.2] x [-0.4,-0.2].!

Let A, B,C, D be sets of states, as shown in Fig. 2a. We are interested in synthesizing the almost sure winning controllers
for the above system for the following two LTL specifications:

p1=0(AN04) = (O0ANO004),
g = (O0B — OC) A (0D — O-C).

The specifications ¢; and - can be represented using the parity automata > shown in Fig. 2b and 2c. Firstly, for each of
the two specifications, we compute a product with the system model. Secondly, we apply the algorithm from Sec. IV on the
product system to solve the synthesis problem. Both of these steps have been implemented on the open-source tool Mascot-
SDS [30]. By symbolically encoding the abstract 21/2-player game using BDD-s, and by using sophisticated acceleration
techniques for solving symbolic fixpoint algorithms from the literature [28], [32], we achieve significant improvement in
performance, in comparison with the implementation of the enumerative algorithm of Dutreix et al. [12] in the tool called
StochasticSynthesis.?

The tool StochasticSynthesis has a couple of additional features compared to our implementation in Mascot-SDS. Firstly,
it performs an adaptive abstraction refinement procedure for achieving better computational efficiency over uniform abstractions.
This is an orthogonal optimization tool that is known to be effective in discretization-based approaches for controller synthesis
[14], [20], [31], [35], and we expect that our uniform abstraction-based synthesis procedure will benefit further from this
in the future. Secondly, StochasticSynthesis also addresses the quantitative aspect of the synthesis problem, which is to
maximize the probability of satisfying the given specification. In all our experiments, we disabled this second feature of
StochasticSynthesis, since the quantitative part is not the main algorithmic contribution of our paper.

We performed all the experiments on a Macbook Pro (2015) laptop equipped with a 2.7 GHz Intel Core i5 processor and a
16 GB RAM.

We performed two sets of experiments to compare the performance of Mascot-SDS and StochasticSynthesis, one with the
adaptive refinement feature of StochasticSynthesis disabled and one with the same enabled. The results have been summarized
in Tab. I, Fig. 3, and Fig. 4. All the experiments empirically show that the approximation error reduces with finer discretization,
as already mentioned in Rem. 2. We highlight the other main findings in the following: (A) When the abstraction-refinement
feature of StochasticSynthesis was disabled, Mascot-SDS outperformed StochasticSynthesis by a large margin. In fact, for
some levels of discretization, StochasticSynthesis crashed due to memory limitation, whereas Mascot-SDS consumed quite
manageable amount of memory and synthesized controllers within reasonable amount of time. (B) Even when the abstraction-
refinement feature of StochasticSynthesis was enabled, for achieving the same level of approximation error, Mascot-SDS
was significantly faster for ¢, and was competitive for o, and consumed much less memory for both ¢; and ¢o: For 1,
at one point Mascot-SDS was more than 150 times faster and consumed around 150 times lesser memory. These findings
demonstrate the superior capabilities of our symbolic solution approach, which can be potentially further improved by using
adaptive refinement techniques.

VII. APPENDIX

A. Proof of Statements

Proof: [Proof of Thm. 3.2] By the definition of the winning set, we already know that P?(& = Parity(P)) = 1 for
all s € WinDom(&, p). Take any s ¢ W := WinDom(&, p). Define 7 to be the first time step when the path visits the set
W. Note that 7 is a random variable taking values in N U {oc}. We use the law of total probability by making the event

Dutreix et al. [12] considered the density function to be given by truncated Gaussian distribution with support D. In our work, we disregard the shape of
the distribution because we restrict the focus to only the qualitative satisfaction of the specification.
Dutreix et al. [12] modeled 71 and @2 using Rabin automata, and we transformed them into (language-) equivalent parity automata to match our setup.
3Repository: https://github.com/gtfactslab/
StochasticSynthesis,
commit nr.: 888b9dcf67369a732b8c225d790bd3343e4442e5
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(a) The state predicates. (b) Parity automaton for ¢1;
the  prioritized  partition  is
P = (0,{492,93,94},{q0, 1 })-
—A stands for any element in

{{},B,C,D}.

{},A,B,C,D {},A,B,C,D

(c) Parity automaton for ¢g; the prioritized partition is P =
({a0, 92,94}, {q1, 43,95, 96})-

Fig. 2: The state predicates and the parity specifications.

Size of Approximation error Abstraction time Total synthesis time Peak memory footprint
Specification |\ iract states MgsDcé’t' SS [12] Mgﬁ)cs"t' SS [12] Mgﬁ)cs"t' SS [12] MgsDcé)t' SS [12]
12 x 1/ 7.0 9.0 0.003s 0.4s 0.02s 8s 21 MiB 125 MiB

1/ax 1/a 6.6 5.9 0.04s 13s 0.2s 18s 23 MiB 1GiB

p1 /g x 1/8 4.0 3.0 0.2s 35minbs 0.7s 9min 18s 26 MiB 81 GiB
1/16 x 1/16 1.7 OoM 0.9s OoM 5s OoM 50 MiB 127 GiB
1/32 x 1/32 0.8 OoM 58 OoM 37s OoM 171 MiB 127 GiB
T x 1/ 11.0 11.8 0.004 s 0.6s 5s 30s 864 MiB 156 MiB

1/a x 1/a 6.8 3.4 0.02s 15s 13s 555 866 MiB 1GiB

P2 /g x 1/8 2.0 1.8 0.2s 34 min20s 1min10s 16minls 890 MiB 81 GiB
1/16 X 1/16 1.1 OoM 0.9s OoM 4min37s OoM 994 MiB 126 GiB
1/32 x 1/32 0.6 OoM 5s OoM 45min 39 s OoM 1GiB 127 GiB

TABLE [: Performance comparison between Mascot-SDS and StochasticSynthesis (abbreviated as SS) [12] when both tools
are restricted to use uniform grid-based abstraction only. Col. 1 shows the specification considered, Col. 2 shows the size of
each individual abstract state, Col. 3 and 4 compare the approximation errors, Col. 5 and 6 compare the abstraction computation
times, Col. 7 and 8 compare the total synthesis times (combined time for computing the over- and the under-approximations
of the almost sure winning regions), and Col. 9 and 10 compare the peak memory footprint (as measured using the “time”
command) for both tools. “OoM” stands for out-of-memory. The length of the sides of the abstract states is measured in units,
and the approximation error is measured in sq. units (the area covered by the abstract states which are in the over-approximation
but not in the under-approximation).
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Fig. 3: Performance comparison between Mascot-SDS and StochasticSynthesis (abbreviated as SS) [7] when the latter was
allowed to use its inbuilt abstraction refinement process for better performance. The different points on the plots were obtained
by running Mascot-SDS using different sizes of abstract states, and running SS using different numbers of refinement stages.
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(a) ¢1 using StochasticSynthesis (b) 1 using Mascot-SDS. (c) 2 using StochasticSynthesis. (d) ¢2 using Mascot-SDS.

Fig. 4: Visualization of the under-approximations—in green—and the over-approximations—in yellow and green, combined—
of the almost sure winning regions for the specifications ¢; and o as computed using the tools Mascot-SDS and
StochasticSynthesis; in red are the complements of the over-approximations. For Mascot-SDS, the abstract states were
chosen of the size 1/32 x 1/32. For StochasticSynthesis, initially the abstracts states were chosen of the size 1 x 1, and then
the tool was made to execute 14 refinement steps to improve the approximation of the solution.



(& = Parity(P)) conditional on 7. Then we have

P?(& = Parity(P))

= P2(& | Parity(P) |7 = n)PL(r = n)
n=0
+ P?(& |= Parity(P) | T = c0) PP (1 = )
— B2 [P5(6 k= Parity(P) |s', 5%, ..., s", 7 = n)]
+ PP(& k= Parity(P) AT = 00)

=" PP(s',s%. s € S\W " € W)
n=0

+ P?(6 = Parity(P) A 6 =0OS\W)

> P& EOW).

The equality (*) holds due to s € W and P.. (S = Parity(P))=1. [ |

Proof: [Proof of Thm. 3.3] For any s € W, we have
P{(& [ Parity(P))
— [ P16 = Parity(P)Taldsi]s, p(s)
S

— [ Tdsls o) + [ PLS | Parity(P)T.(dsi]s,p(s).
w S\W

This means

[ 0= Pr(S | Parity(PY)Tu(dsals, pl) =0 =
S\wW
0

Ve >0, P? [(1-P? (6 [ Parity(P)))1s\w(s1) > €] <==0,

where the last inequality is a consequence of Markov’s inequality for non-negative random variables. By taking the union over
a monotone positive sequence {e, — 0}, we get

[1]

[2]
[3]

[4]
[5]
[6]
[7]
[8]

[9]
[10]

[11]
[12]

[13]
[14]

[15]

P?[(1— P! (S [= Parity(P)))1s\w (s1) > 0]
P?[sy € S\W and P? (& [ Parity(P)) < 1]
PP lsy € S\IV] = 0.

)

0
0
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