An Algorithmic Approach to Stability Verification of Hybrid Systems: A Summary

Miriam García Soto

Joint work with Pavithra Prabhakar
Hybrid system

A dynamical system exhibiting a mixed discrete and continuous behavior.
Hybrid system

A dynamical system exhibiting a mixed discrete and continuous behavior.
Hybrid system

\[\mathcal{H} = (Q, X, \Sigma, \Delta) \]

- \(Q \) finite set of control modes (discrete state space),
- \(X = \mathbb{R}^n \) continuous state space,
- \(\Sigma \subseteq Trans(Q, X) \) set of transitions and
- \(\Delta \subseteq Traj(Q, X) \) set of trajectories.
Stability

- Stability is a fundamental property in control system design and captures robustness of the system with respect to initial states or inputs.

- A system is stable when small perturbations in the input just result in small perturbations of the eventual behaviours.

- Classical notions of stability:
 - Lyapunov stability
 - Asymptotic stability
Lyapunov stability

The equilibrium point 0 is Lyapunov stable if

\[\forall \epsilon > 0 \ \exists \delta = \delta(\epsilon) > 0 : ||\sigma(0)|| < \delta \Rightarrow ||\sigma(t)|| < \epsilon \ \forall t \geq 0 \]
The equilibrium point 0 is asymptotic stable if it is Lyapunov stable and every execution converges to 0.
State of the art

- Existence of Lyapunov function assures stability.
- Lyapunov function computation:
 - Choose a template: \(L(x) = ax^2 + bx + c \).
 - Look for coefficients \(a, b, c \), such that \(L(x) \) holds some conditions.
 - If \(a, b, c \) do not exist, choose a new template.
- Template choice requires user ingenuity.
- Coefficient failure does not provide insights on the next template choice.
Motivation

- **Automatization** of stability analysis.

- Development of an abstraction refinement framework.
Algorithmic approach
Abstraction
Theoretical foundation

Quantitative Predicate Abstraction

One dimensional hybrid system

continuous simulation
Continuous simulation

Let R be a continuous simulation from a hybrid system \mathcal{H} to a hybrid system \mathcal{H}_G. Then:

- \mathcal{H}_G Lyapunov stable \Rightarrow \mathcal{H} Lyapunov stable

- \mathcal{H}_G asymptotically stable \Rightarrow \mathcal{H} asymptotically stable
Quantitative predicate abstraction

- Abstraction based on *predicates*.
- In addition, *weight* computation.
Partition

\[\mathcal{H} = (Q, X, \Sigma, \Delta) \quad \text{Hybrid system} \]

\[\mathcal{P} = \{P_1, \cdots, P_k\} \quad \text{Polyhedral partition of } X \text{ such that:} \]

- \[X = \bigcup_{i=1}^{k} P_i \]
- \[\text{Int}(P_i) \cap \text{Int}(P_j) = \emptyset \quad \forall i \neq j \]

Regions = \mathcal{P}
Quantitative predicate abstraction

- Modified predicate abstraction resulting in a finite weighted graph, G.
- Nodes correspond to the regions of the partition, \mathcal{P}.
- Edges represent existence of an execution from one region to other and evolving through a common adjacent region.
- Weight on every edge corresponds to the maximum scaling of possible executions.
Predicate abstraction: constant derivative
Predicate abstraction: constant derivative

\[\mathcal{H} \]

\[P_2 \]

\[u_2 \]

\[u_1 \]

\[P_1 \]

\[u_3 \]

\[u_4 \]

\[P_4 \]
Predicate abstraction: constant derivative

\(\mathcal{H} \)

\(P_1 \)

\(P_2 \)

\(P_3 \)

\(P_4 \)

\(u_2 \)

\(u_1 \)

\(u_3 \)

\(u_4 \)

\(\implies \)

\(P_1 \)

\(P_2 \)

\(P_3 \)

\(P_4 \)
Predicate abstraction: constant derivative

\[\mathcal{H} \]

\[H = u_1 u_2 u_3 u_4 \]

\[P_1 \quad P_2 \quad P_3 \quad P_4 \]

\[\implies P_1 \quad P_2 \quad P_3 \quad P_4 \]
Predicate abstraction: constant derivative

\[\mathcal{H} \]

\[P_2 \]

\[P_3 \]

\[P_4 \]

\[u_2 \]

\[u_1 \]

\[u_3 \]

\[u_4 \]

\[\implies \]

\[P_1 \]

\[P_2 \]

\[P_3 \]

\[P_4 \]
Predicate abstraction: constant derivative
Predicate abstraction: constant derivative
Predicate abstraction: constant derivative

\[\mathcal{H} \]

\[u_2 \]
\[u_3 \]
\[u_4 \]

\[\mathcal{G} \]

\[\frac{1}{2} \]
\[1 \]

\[P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4 \rightarrow P_1 \]
Reachability relation

\[(s_1, s_2) \in \text{ReachRel}_{P_1, P_2}\] if there exists an execution \(\sigma\):

- \(\sigma(0) = s_1 \in P_1\),

- \(\exists T \geq 0\) with \(\sigma(T) = s_2 \in P_2\) and

- \(\exists P \in \mathcal{P}\) such that \(\forall t \in (0, T), \sigma(t) \in P\).
Reachability relation - polyhedral dynamics

- Polyhedral hybrid system:

\[
\text{ReachRel}_{P_1, P_2} = \{(s_1, s_2) : s_1 \in P_1, s_2 \in P_2, \exists t, \exists u \in \text{dyn}(P) \text{ for some } P \text{ such that } s_2 = s_1 + ut\}
\]
Weight computation

\[W(P_1, P_2) = \sup_{(s_1, s_2) \in \text{ReachRel}_{P_1, P_2}} \frac{||s_2||}{||s_1||} \]
Model-checking

\[\mathcal{H} \]

\[G \]

- Abstract
- Model-Check
- Validate

- Yes → Stable
- No → Unstable

- Yes → Stable
- No → Unstable

- Yes → Unstable
- No → Unstable
Let G be a quantitative abstraction of a hybrid system H.

G1 There is no edge e in G with infinite weight.

G2 The product of the weights on every simple cycle π of G is less than or equal to 1.

G3 Every node in G is labelled by “conv”.

G4 The product of the weights on every simple cycle π of G is strictly less than 1.

Then:

- H is Lyapunov stable if conditions G1 and G2 hold; and
- H is asymptotically stable if conditions G3 and G4 hold.
Model-checking

Every cycle has weight smaller than 1
\[\Downarrow \]
\(\mathcal{H} \) is stable
\[\Downarrow \]
STOP

There is a cycle, \(\pi \), with weight greater than 1
\[\Downarrow \]
\(\pi \) is a counterexample
AVERIST

Software tool

- **Quantitative predicate abstraction** for polyhedral switched systems.
- **Stability analysis** based on the weighted graph.

- Implemented in **Python**.
- Parma Polyhedra Library (**PPL**) to manipulate polyhedral sets.
- **GLPK** solver to compute the weights.
- **NetworkX** Python package to define and analyse graphs.

http://software.imdea.org/projects/averist/index.html
Conclusions

• Summary of an algorithmic approach for stability verification.

• Future directions:
 – Extension to linear and nonlinear dynamics.
 – Compositional techniques for stability analysis.
Thank you!