Michael Kniely


[6]   J. Fischer, M. Kniely,
Variance reduction for effective energies of random lattices in the Thomas–Fermi–von Weizsäcker model,
[5]   K. Fellner, M. Kniely,
Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model,

Journal Articles

[4]   G. Friesecke, M. Kniely,
New optimal control problems in density functional theory motivated by photovoltaics,
Multiscale Modeling and Simulation 17:926–947, 2019.
[3]   K. Fellner, M. Kniely,
On the entropy method and exponential convergence to equilibrium for a recombination–drift–diffusion system with self-consistent potential,
Applied Mathematics Letters 79:196–204, 2018.
[1]   M. Kniely, W. Ring,
Riemannian methods for optimization in a shape space of triangular meshes,
Inverse Problems in Science and Engineering 23:1011–1039, 2015.


[2]   C. Gattringer, M. Kniely,
Dual simulation of finite density lattice QED at large mass,
Proceedings of the 32nd International Symposium on Lattice Field Theory — PoS(LATTICE 2014) 206, 2015.


[B1]   M. Kniely,
Loop and Surface Representations for Finite Density Lattice QED,
AV Akademikerverlag, Saarbrücken, 2015.


[T3]   M. Kniely; Supervisors: Univ.-Prof. Dr.techn. Klemens Fellner, Prof. Dr. Gero Friesecke
Mathematical modeling and analysis of PDE-models for semiconductor devices,
PhD Thesis, Institute of Mathematics and Scientific Computing, University of Graz, 2017.
[T2]   M. Kniely; Supervisor: Univ.-Prof. Dr.rer.nat. Christof Gattringer
Loop and surface representations for lattice QED and related systems,
Master Thesis, Institute of Physics, University of Graz, 2014.
[T1]   M. Kniely; Supervisor: Ao.Univ.-Prof. Dr.techn. Wolfgang Ring
Riemannian methods for optimization in shape space,
Master Thesis, Institute of Mathematics and Scientific Computing, University of Graz, 2012.