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Institute for Human-Computer Interfaces, Graz University of Technology, Krenngasse 37, A-8010 Graz, Austria

Received 17 January 2005; received in revised form 16 September 2005; accepted 14 November 2005

Available online 27 December 2005
Abstract

Recently, a new estimator—Arfit—for multivariate (vector) autoregressive (MVAR) parameters has been proposed.

Several other MVAR estimators (e.g. Levinson recursion, Burg-type Nuttall–Strand, etc.) were already well known in the

field of signal processing.

The various MVAR estimators have been implemented for Octave and Matlab. A method based on cross-validation and

bootstrapping has been developed for comparing the various estimators. Thousand realizations of a MVAR(6)-process

with 5 channels and a length of 1000 samples were generated. Each realization was separated into training and a test

period. The training period was used to estimate the MVAR-parameters with each algorithm; the testing period was used

to probe the accuracy of the estimates.

For large sample sizes, the Burg-type algorithm and Arfit yielded similar results, the multivariate Levinson method was

worse. For small sample sizes, the Burg-type Nuttall–Strand method was significantly better than multivariate Levinson,

the Arfit estimates performed worst.

In summary, the Nuttall–Strand method (multivariate Burg) for estimating MVAR parameters yielded the best results.

The implementation of the algorithms for Octave and Matlab has been made available on the world wide web.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Stochastic signal processing; Parametric modeling; Bootstrapping; Cross-validation; Stationary multivariate spectral analysis;

Coherence; Directed transfer function; Causality; Information flow
1. Introduction

Several multivariate autoregressive (MVAR) es-
timators, like the multichannel Levinson recursion,
the Burg-type Nuttall–Strand method, or the
Vieira–Morf method have been known for more
than 25 years [2]. Marple and Nuttall [3] compared
three multichannel spectral estimates and recom-
mended the Nuttall–Strand method. De Hoon et al.
[1] and Salau [7] investigated the post-sampling
e front matter r 2005 Elsevier B.V. All rights reserved
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accuracy of various MVAR estimators; he recom-
mended the use of a Burg-type algorithm.

Recently, a new method, ‘‘Algorithm 808: Arfit’’
has been published [6,9] and the software imple-
mentation has been made available in Matlab.
In this work, the MVAR estimators of [2,4,5,10]
have been implemented for the use in Octave (see
http://www.octave.org) and Matlab (see http://
www.mathworks.com) [8]. Moreover, a method for
comparing the different MVAR estimators has been
developed.

Since all MVAR estimation algorithms are based
on the principle of minimizing the prediction error,
.

http://www.octave.org
http://www.mathworks.com
http://www.mathworks.com
www.elsevier.com/locate/sigpro


ARTICLE IN PRESS
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we expect only small, if any, differences. Theoretical
approaches, like Cramer–Rao bounds, do not take
into account differences in the implementation of an
algorithm. Therefore, a numerical method using
cross-validation and bootstrapping has been devel-
oped for identifying subtle differences between the
various MVAR estimators.

2. Method

2.1. Theory

An M-variate autoregressive process Yk can be
described by Eq. (1), Ai, are M�M MVAR
parameter matrices, p is the order of the MVAR-
model and Xk is the M-variate innovation process
with zero mean and covariance varfX kg. Schneider
and Neumaier [9] also incorporated an intercept
vector w, which ‘‘is included to allow nonzero mean
of the time series’’. However, without loss of
generality we can make Yk a zero mean process by
removing the mean. The relationship between
the mean, mY, and the intercept, w, is w ¼

ðI � A1 � � � � � ApÞmY .

Y k ¼ A1Y k�1 þ A2Y k�2 þ � � � þ ApY k�p þ wþ X k.

(1)

Eq. (1) can be seen as linear forward predictionP
iðAiY k�iÞ with some noise Xk added. However,

the ‘‘noise’’ is important; if Xk were zero all the
time, then the MVAR process Yk would also be
zero. For this reason, Xk is also called the
innovation process.

The equation can be also seen as a model of how
the observed values Yk have been generated.
Estimation algorithms are applied to a limited
number of observed samples and provide estimates
Âi of the true underlying model parameter Ai.
Naturally, the estimates will never be the exact
parameters. We will compare several of these
estimation algorithms.

Once some estimates Âi of the true parameters are
available, we can rewrite (1) and replace the model
parameters by its estimates. Instead of the innova-
tion process Xk we get the prediction error Ek. In
case where the estimates are ‘‘exact’’, the prediction
error would be identical to the innovation process;
in general, this is not the case.

Ek ¼ Y k � Â1Y k�1 � Â2Y k�2 � � � � � ÂpY k�p. (2)

The mean squared prediction error will be, due to
the estimation error, larger than the mean square of
the innovation process (3). The difference of the
variances is only caused by the estimation error
ðÂi � AiÞ. Hence, the smaller the variance of the
prediction error the more accurate are the estimates.

varfEkg ¼ varfX kg þ E
X

i

ðÂi � AiÞY k�i

" #*

�
X

i

ðÂi � AiÞY k�i

" #T+
. ð3Þ

In practice, the variance of the prediction error,
varfEkg, is larger than the variance of the innova-
tion process varfX kg. Only when the estimates are
correlated with the testing samples (e.g. the same
samples were used for the estimation) might varfEkg

be smaller than varfX kg; this case is also known as
‘‘over-fitting’’. We will prevent over-fitting by using
distinct data sets for estimating and for testing of
the MVAR estimates.

2.2. Simulation

From a multichannel EEG recording 5-variate
AR(6) parameters were obtained; these MVAR
parameters were used to generate a thousand
realizations; the intercept was w ¼ 0; the covariance
of the innovation process was the identity matrix,
i.e. varfX kg ¼ I , and the mean square of the
simulated signal fY kg was MSY ¼ 36. The MVAR
parameters of the simulated process are available
from Schlögl [8]. Each realization had a length of
1000 samples, and was then separated into training
and testing segments. The training samples were
used to estimate the MVAR parameters. From each
realization, N samples were used (with N ¼ 40, 50,
60, 70, 100, and 400) to obtain the MVAR-estimate.

The prediction error (2) was calculated from the
test segment (500 samples) of each realization, and
the total mean squared prediction error (MSE)
(across all channels) was obtained from each testing
period (500 samples). Non-overlapping training
and testing periods ensured that over-fitting was
avoided. The calculations were performed on a PC
with Linux-OS and Matlab 5.3.0.10183 (R11).

Various MVAR estimators were tested. The
following five algorithms were the most interesting
candidates; and were, therefore, investigated in
more detail.
(i)
 Arfit, it estimates also an ‘‘intercept’’ vector.

(ii)
 Arfit 0, assuming a zero intercept.
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Ranking of algorithms

Rank Algorithm m7sc
Multichannel Levinson algorithm with the
correlation function estimation method; it is
also called the multichannel Yule–Walker
method.
1 Nuttall–Strand with unbiased covariance 2.481270.0179
(iv)

2 Nuttall–Strand with biased covariance 2.519770.0183

3 Arfit0 2.721770.0207

4 Multichannel Yule–Walker 3.165970.0378
Multivariate Burg-type algorithm (Nuttall–
Strand) with biased estimation of covariance
matrices.
5 Arfit 3.564370.0427
(v)
The total mean square prediction error (MSE) was calculated for
Multivariate Burg-type algorithm (Nuttall–
Strand) with unbiased estimation of co-var-
iances.
one thousand realizations. The mean and the standard error of

the MSE are depicted for a sample number of N ¼ 70.

The estimation algorithms (i) and (ii) are avail-

able from Schneider and Neumaier [9], algorithms
(iii)–(v) are implemented in the function MVAR.M
of the TSA-toolbox [8].
3. Results

The mean and the standard error of the mean
were obtained from the MSE of a thousand
realizations. The results for different sample num-
bers N and for different algorithms are shown in
Fig. 1. All results showed a MSE which is smaller
than the MSY ¼ 36; this indicates that stable
MVAR estimates (all poles inside unit circle) have
been obtained.

We also notice the prediction error became
smaller with increasing sample numbers N (Fig. 1).
This is common knowledge and can also be
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ss with 5 channels; the total mean square of the MVAR-

ss was approx. 36. The x-scale shows the MSE, the y-axis

s the ranking of the 5 algorithms. The number of the

les N used for estimation was varied between N ¼ 40 and

If the number of samples was sufficiently large (NX70), the

nce of the prediction error became smaller than 10%

.6) of the signal variance.
theoretically proven. It accounts for the fact that,
for a fixed number of parameters, more data
provide more accurate model estimates. On the
other hand, Arfit contains additionally the intercept
parameters w and should, therefore, perform worse
than Arfit0. Also this expectation is confirmed by
our experimental results (see Table 1 and Fig. 1).

The algorithms were ranked according to average
MSE based on the results with N ¼ 70 (Table 1).
The differences between Nuttall–Strand and Arfit0
were highly significant. For the case Np50,
Arfit0 became even worse than the multi-channel
Yule–Walker method. For large number of samples
(NX400) only Yule–Walker seems to be slightly
worse; the other methods did not show significant
differences.

4. Discussion

Although, all MVAR estimators are based on the
idea of minimizing the residual process, the pre-
sented method was able to identify subtle differ-
ences. The importance of good model estimates is
also demonstrated; better estimates provide a
smaller prediction error; the predictability is larger
and the properties of the data are described more
accurately. As a side effect, parameters derived from
MVAR estimates (e.g. eigenmodes and associated
damping periods, auto- and cross-spectra, coher-
ence, directed transfer function, etc.) are also likely
to be more accurate.

The results confirm the outcome of Marple and
Nuttall [3] and Salau’s [7]; i.e. the Burg-type
algorithm (Nuttall–Strand) is better than the multi-
channel Yule–Walker method. When the number of
observations was limited, the most accurate MVAR
estimates were provided by the Nuttall–Strand
method. When a sufficient number of samples were
used for the estimates, the difference between
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Nuttall–Strand and the Arfit was not significant.
This result is in agreement with De-Hoon et al. [1],
who showed for univariate AR parameters, that
the Burg approach is superior to the Yule–Walker
method.

The algorithm Arfit did not show any obvious
advantage with respect to the Nuttall–Strand
algorithm. But, if the number of observations was
limited, the Nuttall–Strand method provided the
most accurate estimates. Consequently, it is recom-
mended to use the Nuttall–Strand method (a
multivariate Burg-type algorithm) for estimating
multivariate AR parameters.
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[8] A. Schlögl. The time series analysis toolbox for octave and

matlab, available online at http://www.dpmi.tu-graz.ac.

at/�schloegl/matlab/tsa/ and http://cvs.sourceforge.net/

viewcvs.py/octave/octave-forge/extra/tsa/.

[9] T. Schneider, A. Neumaier, Algorithm 808: Arfit-a Matlab

package for the estimation of parameters and eigenmodes of

multivariate autoregressive models, ACM T. Math. Soft-

ware 27 (March 2001) 58–65.

[10] O.N. Strand, Multichannel complex maximum entropy

(autoregressive) spectral analysis, IEEE T. Automat. Contr.

22 (August 1977) 634–640.

http://www.dpmi.tu-graz.ac.at/~schloegl/matlab/tsa/
http://www.dpmi.tu-graz.ac.at/~schloegl/matlab/tsa/
http://www.dpmi.tu-graz.ac.at/~schloegl/matlab/tsa/
http://cvs.sourceforge.net/viewcvs.py/octave/octave-forge/extra/tsa/
http://cvs.sourceforge.net/viewcvs.py/octave/octave-forge/extra/tsa/

	A comparison of multivariate autoregressive estimators
	Introduction
	Method
	Theory
	Simulation

	Results
	Discussion
	References


