
An Interface Algebra for Real-Time Components ∗

Thomas A. Henzinger
EPFL and UC Berkeley

tah@epfl.ch

Slobodan Matic
UC Berkeley

matic@eecs.berkeley.edu

Abstract

We present an assume-guarantee interface algebra for
real-time components. In our formalism a component im-
plements a set of task sequences that share a resource. A
component interface consists of an arrival rate function
and a latency for each task sequence, and a capacity func-
tion for the shared resource. The interface specifies that
the component guarantees certain task latencies depending
on assumptions about task arrival rates and allocated re-
source capacities. Our algebra defines compatibility and
refinement relations on interfaces. Interface compatibility
can be checked on partial designs, even when some com-
ponent interfaces are yet unknown. In this case interface
composition computes as new assumptions the weakest con-
straints on the unknown components that are necessary to
satisfy the specified guarantees. Interface refinement is de-
fined in a way that ensures that compatible interfaces can
be refined and implemented independently. Our algebra
thus formalizes an interface-based design methodology that
supports both the incremental addition of new components
and the independent stepwise refinement of existing compo-
nents. We demonstrate the flexibility and efficiency of the
framework through simulation experiments.

1 Introduction

The increasing complexity of real-time and embedded
systems necessitates advanced design and maintenance pro-
cedures for the assurance of timing requirements. Auto-
matic tools are highly desired for such an error-prone and
tedious process. Since timing performance has to be esti-
mated for a large number of design alternatives, the tools
are required to be efficient. In addition to that, common
modification of system requirements demands flexible pro-
cedures.

An often advocated software engineering approach is
component-based design, in which a software system is cre-

∗This research was supported by the AFOSR MURI grant F49620-00-
1-0327 and by the NSF grants CCR-0225610 and CCR-0208875.

ated by combining preexisting modules with new software
that provides both glue between the components, and new
functionality. This simplifies the design process since such
a system decomposition provides a solution to the original
large problem by solving several smaller problems. Another
advantage of such an approach lies in the fact that compo-
nent performance analysis can detect design errors before
the components are implemented and composed.

Previous research in component-based real-time systems
concentrated on partitioning and scheduling frameworks
that make the temporal behavior of a component indepen-
dent of the presence of other components in the system
[5, 11]. More recent works present methods that abstract
the internal complexity of a real-time component into a
component interface that is subsequently used for the rest
of the design [12, 7, 1]. This research considers the pe-
riodic resource model (T ,C), a resource abstraction un-
der which a component is guaranteed to get C units of the
resource every T units of time. The methods show how
to abstract a set of independent periodic tasks with EDF or
RM scheduling algorithms into a single periodic task. Later
work [13] shows how to abstract a set of independent pe-
riodic tasks into a bounded-delay interface. The bounded-
delay resource model (c, δ), studied in [10, 8, 9], guarantees
fraction c of the resource with at most δ time units of delay.

In this paper we start with a different task group model
and use a method, similar to the one presented in [13], for
abstracting such a group into a bounded-delay interface.
The task model consists of a set of aperiodic tasks each
specified with an arrival rate function and a relative dead-
line. The arrival rate function bounds the number of task
requests in a given interval of time. To abstract such a task
group we consider only the bounded-delay resource model
with EDF scheduling, although the results for the periodic
resource model can be applied in a similar setting. Then
we consider such a task group as a part, i.e., a component,
of a larger real-time system specified with a set of task se-
quences that define task precedence constraints. The objec-
tive of the paper is to enable the automatic, efficient, and
flexible component-based design of such a system.

To address the problem we apply concepts from interface

theories [2, 3]. In this formalism an interface of a compo-
nent specifies what the component expects (assumes) from
its environment and what it provides back (guarantees) to
the environment. The constraints should be sufficient to
check if two interfaces are compatible, i.e., if the underlying
components work properly when composed together. In the
real-time context ‘proper’ means satisfying timing require-
ments, e.g., end-to-end latency. Since the system specifica-
tion includes dependencies between the tasks from different
components, the interface cannot just contain resource con-
straints as in previous works, but also dataflow propagation
constraints. Therefore, besides the resource requirements,
an interface also specifies the arrival rate assumption and
the latency guarantee for task sequences.

We define an interface algebra for real-time interfaces,
a formal algebra that enables tool support for the proposed
methodology. Besides the compatibility relation, the alge-
bra consists of two operations and a relation. The interface
composition operation collects two interfaces and adds the
resource requirements of the underlying components. The
interface connection operation enables sequencing of inter-
face tasks. The refinement relation aims at formalizing the
relation between abstract and concrete versions of the same
component. A more refined version of a component makes
weaker input assumptions and stronger output guarantees
than a more abstract description. Therefore, in a design we
can always substitute a refined version for an abstract one.

One of the beneficial properties of the interface formal-
ism is incremental design. According to this property the
composition of interfaces can be performed in any order,
i.e., it is associative. Besides having a more flexible frame-
work, this also means being able to check compatibility
and compute the composition of the two interfaces without
specifying the interfaces of other components in the system.
Note that task group abstraction procedures are generally
not associative.

Additionally, in component-based design, one wants to
refine an interface towards an implementation, indepen-
dently of the implementation of other components. If all im-
plementations satisfy their respective interfaces, the compo-
nents should properly work together. The independent im-
plementability property of the formalism states that in order
to refine a given composition of two interfaces, it suffices
to independently refine each interface and then compose the
obtained refinements. This property enables the system cor-
rectness to be established during interface design, without
global checks after the components are implemented.

Our formalism supports automatic interface compatibil-
ity and interface refinement checking. We introduce inter-
faces as stateless objects that are represented by predicates.
Thus, checking of the two properties is efficient. We also
consider more expressive interfaces that describe compo-
nents with performance polymorphism, i.e., with multiple

levels of service. In this paper we are concerned with defin-
ing the algebra and showing how it can be used on a few
examples of real-time applications of moderate complexity.

Related work. Besides the theoretical work in compo-
sitional real-time scheduling frameworks, the increased in-
terest in real-time component-based systems has recently
resulted in first implementations. In [15] the interface of
a software component is extended to include real-time as-
sumptions and guarantees of the component. We use sim-
ilar functional and temporal specifications, except that we
allow for multiple levels of service of a component. Since
the goal of [15] is reusability across different platforms, the
resource consumption specification is not part of the com-
ponent interface. So, the resource utilization computation is
separated from the application design, which assumes vir-
tual resources. Besides, no abstraction of resource require-
ments is studied.

The approach taken in this paper is most similar to the re-
cent work [14]. That work is the first research effort that for-
mally combines the network calculus and interface design
theories in the real-time context. It is not limited to a par-
ticular task set characterization or to a particular resource
model. In contrast to the traditional real-time approaches, it
allows for the composition of software process components
before the hardware resource components are specified. In
[14] each component represents a task. There is no abstrac-
tion of task groups into components, and no discussion of
interface refinement, which is one of the goals of our work.
Also, the task model in [14] assumes independent tasks,
so interface compatibility checking does not have to take
into account dataflow constraints. Finally, they assume pre-
emptive fixed-priority scheduling, where each component is
specified with a certain priority.

In interface theory research [2, 4] the component interac-
tion is specified using expressive interfaces. The temporal
input/output behavior of a component is typically captured
by an automaton. Therefore, the automaton of the compos-
ite interface is constructed by pruning all violating states
from the product of the component automata. Such a state-
ful approach is a more general way to address multiple lev-
els of component performance. However, in this paper we
keep the interface formalism simple in order to focus more
on real-time issues.

Outline. Sec. 2.1 introduces the real-time component
model studied in the paper, with its functional, temporal,
and resource parts. The temporal portion of the component
interface consists of an arrival rate function and a delay for
each request. The same section introduces the resource por-
tion of the interface in the form of the bounded-delay re-
source model. How to obtain resource partition parameters
for a group of tasks is presented in Sec. 2.2. We introduce
interfaces in Sec. 3.1, and formally define an interface al-
gebra in Sec. 3.2. A discussion of how interfaces can be

2

used for efficient and automatic component-based design
and verification is given in Sec. 4. In particular, incremen-
tal design is discussed in Sec. 4.1 and independent imple-
mentability in Sec. 4.2.

2 Real-Time Components

2.1 Task and Resource Model

Functional model. Let a task sequence π = τ1τ2 . . . τk

be a finite sequence of tasks. There exists a precedence con-
straint between τj and τj+1 for each j = 1, . . . , k − 1. Al-
though our arguments can be generalized for trees of tasks,
we keep the task sequence model for simplicity reasons. We
consider components as units for the implementation, reuse,
and composition of task sequences. The functional descrip-
tion of a component consists of a set of task sequences. Two
task sequences from the same component can contain the
same task. Fig. 1 shows an example of a component with
two task sequences, τ1τ3 and τ2τ3. The task sequences are
interleaved and independent, and tasks are preemptible. For
the purposes of the paper it is not important whether task
inputs/outputs are data processed by tasks or only requests
for task execution.

Arrival-delay temporal model. The temporal interface
of a component is similar to the interface of a component
in [15], and consists of an arrival rate function and a maxi-
mum delay for each sequence of the component. In general,
it consists of several pairs of arrival rate functions and de-
lays, one pair for each level of service of the component, as
further discussed in Sec. 4.

An arrival rate function a for a task sequence is a func-
tion that bounds the number of the invocations of the task
sequence: for a time interval of length t the number of invo-
cations is bounded by a(t). In this paper we concentrate on
the bursty arrival pattern, which is defined by the function
a(t) = σ+ρ·t for some σ, ρ ∈ R≥0. For instance, sporadic
invocation patterns can be modeled with bursty arrival rate
functions. The expression for a gives the upper bound on
the number of invocations. When required we consider the
integer upper bound ba(t)c.

A number d ∈ R is a delay for a task sequence if all
tasks of the sequence must be completed within d units of
time, i.e., a sequence output must be generated at most d
time units after the occurrence of a sequence input.

Bounded-delay resource model. Let the capacity
0 ≤ c ≤ 1 be a fraction of the resource assigned to a com-
ponent, and let δ ≥ 0 be the maximum time the compo-
nent may have to wait to receive this fraction. A resource
is called a bounded-delay resource R = (c, δ) if for every
real L > 0, it can guarantee allocations of at least c ·L units
of the resource in every time interval of length L + δ [10].

The motivation for the bounded-delay resource model
comes from the fact that the resource demand of a com-
ponent cannot be precisely described only with a resource
fraction c. This is so, because different components may
have considerably different delay requirements [9]. The
choice of the delay bound δ addresses the trade-off between
high context switch costs (smaller δ) and high task execu-
tion latencies (larger δ).

For a given bounded-delay resource R = (c, δ), the re-
source supply bound function sbfR: R≥0 → R≥0 maps
each t ∈ R≥0 to the minimum supply of the resource R

over all time intervals of length t . From the definition of
the bounded-delay resource model it follows that

sbfR(t) = sbf(c,δ)(t) =

{

0 if t ≤ δ,
c(t − δ) if t > δ.

2.2 Task and Component Composition

Task composition. We first briefly review the re-
sults from [12, 13] for schedulability conditions under the
bounded-delay model and EDF scheduling. Then we apply
and generalize them for the task model used in this paper.

Let W be a set of independent and preemptive tasks that
share the same resource, and let R be a bounded-delay re-
source model. We say that (W ,R, EDF) is schedulable if
under every instance of allocations of the resource R, there
exists a feasible EDF schedule for W [12]. If (W ,R, EDF)
is schedulable, then the set of tasks W under the resource
R = (c, δ) and the EDF scheduling algorithm can be ab-
stracted as a single requirement (c, δ), i.e., no global knowl-
edge of task internals is necessary. A discussion on how to
schedule several (c, δ) resource requirements can be found
in [9].

Let W be a set of periodic tasks τj = (pj , ej), where
pj is the period, ej is the worst-case execution time (wcet)
requirement of the task τj , and the deadline of each task is
assumed to be equal to its period. For a given set of tasks
W , the resource demand bound function dbf: R≥0 → R≥0

maps each t ∈ R≥0 to the maximum resource demand over
all time intervals of length t . For the EDF scheduling algo-
rithm we have dbfW (t) =

∑

τj∈W
bt/pjc · ej .

For the case of periodic workloads W , Thm. 1 in [13]
gives a sufficient and necessary condition for schedulability:
(W ,R, EDF) is schedulable iff for all 0 < t ≤ 2·lcmW , the
maximal resource demand is no greater than the minimum
resource supply, i.e., dbfW (t) ≤ sbfR(t). In this condi-
tion, lcmW is the least common multiple of the periods in
W .

Finally, Thm. 3 in [13] gives a general schedulability
condition for the case of other workload models W for
which dbfW can be computed: (W ,R, EDF) is schedulable
iff for all t > 0, we have dbfW (t) ≤ sbfR(t).

3

τ3τ1

τ3τ2

τ1

τ2

τ3

Figure 1. Task sequence and component representation

W τ1 τ2 τ3

σ 1 1 3
ρ 1/2 1/3 1/2+1/3
d 2/3 2 1
e 0.1 0.3 0.1

Table 1. Temporal interface for Fig. 1

We apply this result for the case of the aperiodic work-
load defined with arrival rate functions and delays for tasks.
Let W be a set of tasks τj = (aj , dj , ej), where aj is the
arrival rate function, dj the delay, and ej the wcet of the
task τj , and let R = (c, δ) be the bounded-delay resource
model. To apply the theorem we first compute the demand
bound function of the task τj . We note that there are at most
baj(t − dj)c invocations of the task τj that are released and
required to complete in a time interval of length t . There-
fore, we have

dbfτj
(t) =

{

0 if t ≤ dj ,
baj(t − dj)c · ej if t > dj .

The demand bound function of the total workload set W

is dbfW (t) =
∑

τj∈W
dbfτj

(t). Thus, both dbfW and
sbfR are known, and we can apply Thm. 3 [13] to check if
(W ,R, EDF) is schedulable.

Given the task set W , let cW be the capacity func-
tion that maps each bounded delay δ ≥ 0 to the small-
est resource fraction cW (δ) such that the component
(W ,R, EDF) is schedulable with R = (cW (δ), δ). Tab. 1
shows an instance of the task workload of the component in
Fig. 1, with each task modeled as a bursty arrival task. Fig. 2
shows capacity functions cW for each W = {τj} consist-
ing of only a single task τj = (aj , dj , ej). For such a simple
set W , the analytical expression for cW can be derived. For
instance, we have cW (0) = max{ej · ρj , σj · ej/dj}, and
δ1 = inv(cW)(1) = dj − σj · ej .

In the rest of the paper we assume the following nota-
tion. For two functions g1 and g2, with a domain set X and
range set R, and for φ ∈ {<,≤, >,≥}, we write g1 φ g2, if
g1(x) φ g2(x) for all x ∈ X . For instance, g1 > 1 means
g1(x) > 1 for all x ∈ X . Similarly, the function g1 + g2

is defined by (g1 + g2)(x) = g1(x) + g2(x) for all x ∈ X .

0 0.5 1 1.5 2 2.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BOUNDED DELAY − δ

C
A

P
A

C
IT

Y
 −

 c

c
1

c
2

c
3

Figure 2. Capacity functions for Tab. 1

Component composition. In the formalism that we
present in the next section the capacity function cW rep-
resents a part of the interface of the component consisting
of the task set W . In order to compose such components we
need to compose resource assumptions in the form of such
capacity functions. For this we again recall Thm. 3 [13],
but now for the workload consisting of two bounded-delay
tasks, {(c1, δ1), (c2, δ2)}. It follows from the theorem that
this workload can be abstracted by the bounded-delay re-
source (c, δ), where c = c1 + c2 and δ = min{δ1, δ2}.
This equation shows how to compute capacity functions for
composite components: if two components (workloads) W1

and W2 are specified with their respective capacity func-
tions cW1

and cW2
, then the sum cW1

+cW2
of the two func-

tions ensures the schedulability of the composition. That is
why, in our interface algebra (Sec. 3.2), when we perform
component composition we add the corresponding capacity
functions. Note that such an operation is associative. The
task group composition, which we previously explained,
does not have the associativity property.

3 Real-Time Interfaces

In Sec. 3.1 we motivate the assume-guarantee principle
of the formalism, and we introduce interface predicates. In

4

Sec. 3.2 we formally define interfaces and prove an impor-
tant proposition about interface refinement.

3.1 Informal Description

Let a component implement a single task sequence, i.e.,
let it have a single input port i and a single output port o.
An interface is a constraint on the environment consisting
of an input assumption and an output guarantee [2, 3]. Even
though inputs (resp. outputs) of an actual component are
task sequence request (resp. completion) events, in our for-
malism these events are abstracted by arrival rate functions.
So, the values of the interface input and output ports are
arrival rate functions. Let A be the set of all arrival rate
functions, i.e., the set of all monotonically increasing func-
tions a: R≥0 → R≥0. An interface assumption may be that
the input arrival rate i ∈ A is bounded by a given function
a ∈ A, i.e., i ≤ a. Given the maximal delay d ∈ R≥0 of
the component, for the arrival rate function of the output o

we have the output guarantee that o(t) ≤ i(t + d) for all
t ∈ R≥0. This inequality holds because, if the delay is at
most d, then for all input requests in an interval of t + d
units, the outputs are produced in an interval of at least t

units. Let id be the function defined as id(t) = i(t + d).
A more expressive interface includes also a measure of

resource consumption. We assume that such an interface
contains an input port r , whose value is the capacity func-
tion of the component. Let C be the set of all capacity
functions, i.e., the set of all monotonically increasing func-
tions c: R≥0 → [0, 1]. The resource capacity assumption
is r ≥ c. Formally, the input predicate of the interface is
r ≥ c ∧ i ≤ a, and the output predicate is o ≤ id. This in-
terface asserts that “if the environment provides a capacity
larger than c, and input requests are upper bounded by a,
then the component produces outputs with a delay smaller
than d.” Fig. 3 graphically represents an interface of a com-
ponent that implements a sequence π1 consisting of a single
task τ1. The interface is defined as a triple (a1, d1, c1).

a1

c1

F1

d1π1
i1

r

o1 o1 ≤ id1

1i1 ≤ a1

r ≥ c1

Figure 3. Interface for single task sequence

Let a component implement n ∈ N>0 task sequences
through pairs (ij , oj) of input-output ports (j = 1, . . . ,n).
The interface of such a component bounds the arrival rate
functions aj of ij and the delays dj of oj , for each j =
1, . . . ,n. Such a workload is still to be executed on a single

resource partition whose capacity function c can be com-
puted by task composition, as described in Sec. 2.2. We
write FW for the interface obtained by the composition of
the tasks in the set W . Fig. 4 shows an interface with two
single-task sequences and the corresponding predicates.

c2,3

a3 d3

a2 d2

F2,3

π2

π3

o2 ≤ id2

2
o3 ≤ id3

3

i2
i3

r

o2

o3
i2 ≤ a2

i3 ≤ a3

r ≥ c2,3

Figure 4. Interface for multiple sequences

We introduce two operations to construct more complex
from simpler interfaces. The composition operation puts to-
gether the input and output ports of the two interfaces, and
adds their resource capacity functions. The interface com-
position is defined if the sum of the two capacity functions
is not larger than the constant function 1. Fig. 5 shows the
interface resulting by composing the interface from Fig. 3
with the interface from Fig. 4. Thus, the interface de-
scribes three single-task sequences, π1 = τ1, π2 = τ2, and
π3 = τ3.

a3 d3π3

c1 + c2,3

F1||F2,3

a1 d1π1

a2 d2π2

o1 ≤ id1

1
o2 ≤ id2

2
o3 ≤ id3

3

i1
i2
i3

r

o1

o2

o3

i1 ≤ a1

i2 ≤ a2

i3 ≤ a3

r ≥ c1 + c2,3

Figure 5. Interface composition

The connection operation connects the tasks of an in-
terface into new sequences. This operation extends the set
of interface task sequences, and therefore all input-output
ports remain in the interface. Fig. 6 shows the interface
from Fig. 5 after the two-task sequence π12 = τ1τ2 is cre-
ated using the connection operation. The figure shows that
the resource capacity assumption is not changed by the con-
nection operation, and that the delay guarantee of a new se-
quence is computed as the sum of delays for the individual
tasks of the sequence. The input assumptions of the result-
ing interface describe the most general constraints on the
arrival rates for the extended set of task sequences. In par-
ticular, there is a constraint for each task that occurs in a se-
quence of the interface, namely, i1+i12 ≤ a1, i2+id1

12 ≤ a2,
and i3 ≤ a3. For instance, the rate of requests for task
sequences that contain τ2, i.e., the sum of the arrival rate
functions i2 and i12 (delayed by d1), is bounded by a2.

The input assumption of a newly created sequence π can-
not be represented in a simple form iπ ≤ aπ . To illustrate

5

d3

c1 + c2,3

d2

d1 o1 ≤ id1

1
i1
i12
i2
i3

r

o1

o3
o2 ≤ id2

2
o3 ≤ id3

3

o12 ≤ id1+d2

12

r ≥ c1 + c2,3

o12

o2
d1+d2

π1

π2

π3

π12

i3 ≤ a3

i2 + id1

12 ≤ a2

i1 + i12 ≤ a1

(F1||F2,3)⊕π12

Figure 6. Interface connection

this, we consider bursty arrival rate functions for a two-task
sequence π12 = τ1τ2 added by connection. We assume that
τ1 is specified with arrival rate function a1(t) = σ1 + ρ1 · t
and delay d1, and τ2 with a2(t) = σ2 + ρ2 · t and d2. If
we assume the input arrival rate functions for the single-
task sequences τ1 and τ2 to be 0, i.e., i1 = 0 and i2 =
0, then for the input arrival rate function i12 of the two-
task sequence π12, we have the constraints i12 ≤ a1 and
id1

12 ≤ a2. If i12(t) = σ + ρ · t , then this is equivalent to
σ+ρ ·t ≤ σ1 +ρ1 ·t , and σ+ρ ·(t +d1) ≤ σ2 +ρ2 ·t . The
values of σ and ρ that satisfy the two constraints are shown
as a shaded area in the rightmost graph of Fig. 7. There is a
trade-off between parameters σ and ρ, and this area cannot
be specified in the i12 ≤ a12 form.

0

0

σ1

ρ

σ

ρ1 0

0

ρ

σ

ρ2

σ2

0

0

ρ

σ

ρ2

σ2
σ1

ρ1

σ2 − ρ · d1

i1 i2 i12

Figure 7. Bursty function parameters for i1, i2,
and i12

If the connection operation adds the three-task sequence
π123 = τ1τ2τ3 to the interface F1‖F2,3, the resulting in-
terface (F1‖F2,3)⊕π123 contains an input and output port
for each of the sequences π1, π2, π3, and π123. The in-
put assumptions are i1 + i123 ≤ a1, i2 + id1

123 ≤ a2, and
i3 + id1+d2

123 ≤ a3. In the general case, the connection oper-
ation is defined as adding a set of sequences, each of which
does not contain a cycle of tasks. For instance, the inter-
face (F1‖F2,3)⊕{π12, π21} consists of the input assump-
tions i1 + i12 + id2

21 ≤ a1, i2 + id1

12 + i21 ≤ a2, and i3 ≤ a3.
We also define a refinement relation between a more ab-

stract and a more refined interface description. A more
refined interface makes weaker input assumptions and
stronger output guarantees than a more abstract interface.
In that way, a refined description can always be substituted
for an abstract one. From the expressions of interface in-
put and output predicates it follows that an interface can

S = {π13, π23},
a1(t) = 1 + t/2, a2(t) = 1 + t/3, a3 = a

d1

1
+ a

d2

2
,

d1 = 2/3, d2 = 2, d3 = 1

F Fa Fb Fc

Expr. F1,2,3⊕S (F1,2‖F3)⊕S (F1‖F2‖F3)⊕S

cF ca cb cc

aF (a1, a2, a3)

dF (d1, d2, d3)

Table 2. Interface refinement

be refined by either decreasing the capacity function, or in-
creasing the arrival rate function for a task, or decreasing
the delay of a task. Note that in Fig. 7 increasing σ1, ρ1, σ2

or ρ2, or decreasing d1, makes the shaded areas larger, i.e.,
the constraints on inputs i1, i2, and i12 become weaker.

We first show examples of interface refinement through
modification of the capacity function, while keeping other
interface parameters constant. Fig. 8 shows the three in-
terfaces Fa, Fb, and Fc of the component depicted in
Fig. 1. The task composition operation (Sec. 2.2) is shown
with rounded rectangles, and the interface composition with
dashed rectangles. The interface expressions and parame-
ters are given in Tab. 2. It is assumed that only the task
sequences τ1τ3 and τ2τ3, and not the sequences τi for
i = 1, 2, 3, are implemented by the component. Therefore,
we assume that a3 = ad1

1 + ad2

2 . All three interfaces have
the same task arrival rate functions (a1, a2, a3) and delays
(d1, d2, d3). However, the corresponding capacity functions
ca, cb, and cc are different because task composition is per-
formed on different task sets. The interface Fa, for which
task composition is applied on the entire task set, is charac-
terized by a smaller capacity function than the interface Fc,
for which each task is considered as a separate component.
Fig. 9 shows that ca ≤ cb ≤ cc. Therefore, we have that Fa

refines Fb, Fb refines Fc, and Fa refines Fc.

For some interfaces it is possible to increase the ar-
rival rate functions or decrease the delays of the interface
task sequences, while keeping the resource capacity func-
tion constant. In some cases it is even possible to add a
new task sequence to the component without affecting the
capacity function. For instance, let τ1 = (a1, d1, e1) =
(1 + t/2, 1, 0.2) and τ2 = (a2, d2, e2) = (1 + t/2, 2, 0.2),
i.e., let the two tasks differ only in the delay. It can be shown
that the capacity functions c1 and c1,2 for the independent
task sets {τ1} and {τ1, τ2} are equal, i.e., c1 = c1,2. This is
a consequence of the small delay requirement d1. It follows
that F1,2 refines F1. As explained in the following subsec-
tion, the definition of refinement allows a larger number of
ports in the refined interface.

6

τ1

τ3

τ1

τ2

τ3

τ1

τ2

Fb
Fa

τ3

τ2

� � Fc

Figure 8. Fa = F1,2,3⊕{π13, π23}, Fb = (F1,2‖F3)⊕{π13, π23}, Fc = (F1‖F2‖F3)⊕{π13, π23}

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BOUNDED DELAY − δ

C
A

P
A

C
IT

Y
 −

 c

c
a

c
b

c
c

Figure 9. Capacity functions for Tab. 2

3.2 Interface Algebra

Let T be a set of tasks. A task sequence π = τ1τ2 . . . τk

is a finite sequence of different tasks τj ∈ T , i.e., for all
1 ≤ i < j ≤ k we have τi 6= τj , and τi has to complete
before τj starts execution.

An interface F = (SF ,T+
F

,AF , DF , cF) consists of:

• A set SF of task sequences, and a set T+
F

⊆ T of
available tasks. The set T+

F
contains the tasks that are

available to the implementation of the interface F and
its refinements. Let the set TF of tasks contain all tasks
that occur in the sequences in SF , i.e., TF = {τ ∈ π |
π ∈ SF}. We require that (1) TF ⊆ T+

F
and (2) for

every task τ ∈ TF , the sequence with the single task τ
is contained in SF .
For each task sequence π ∈ SF there exist an input
port iπ and an output port oπ . Let IF = {iπ | π ∈
SF}∪{r}, OF = {oπ | π ∈ SF}, and PF = IF ∪OF .
The type of a port x ∈ PF is A (the set of arrival
rate functions) if x 6= r , and C (the set of capacity
functions) if x = r . A valuation v of a set PF of ports

is a function that maps each port x ∈ PF to a value
v(x) in the type of the port x.

• A function AF that maps each task τ ∈ TF to an ar-
rival rate function AF (τ) ∈ A, and a function DF that
maps each task τ ∈ TF to a delay DF (τ) ∈ R≥0.
Given a task sequence π ∈ SF , let DF (π) be the sum
of the delays of its tasks, i.e., DF (π) =

∑

τ∈π DF (τ).
By definition, for the empty task sequence ε, we have
DF (ε) = 0.

• A capacity function cF ∈ C.

The input predicate (input assumption) φI
F

=
φI (SF ,AF , DF , cF) over the input ports IF is defined to
be

φI

F = (r ≥ cF) ∧
∧

τ∈TF

(
∑

π=π1·τ ·π2∈SF

iDF (π1)
π ≤ AF (τ)).

(1)
The output predicate (output guarantee) φO

F
=

φO (SF , DF) over PF is defined to be

φO

F =
∧

π∈SF

(oπ ≤ iDF (π)
π). (2)

The interface algebra for real-time components consists
of:

• A partial binary function called composition, mapping
two interfaces F and G to an interface F‖G . The com-
position F‖G is defined if T+

F
∩ T+

G
= ∅, and if not

cF + cG > 1, i.e., if (cF + cG)(0) ≤ 1. If F‖G is de-
fined, then SF‖G = SF ∪SG , T+

F‖G = T+
F
∪T+

G
, and

cF‖G = min{cF + cG , 1}. In addition, AF‖G(τ) =
AF (τ) if τ ∈ TF , and AF‖G(τ) = AG(τ) if τ ∈
TG . Similarly, DF‖G(τ) = DF (τ) if τ ∈ TF , and
DF‖G(τ) = DG(τ) if τ ∈ TG .
The composition operation is commutative and asso-
ciative. In particular, for all interfaces F , G , and H , if
(F‖G)‖H is defined, then F‖(G‖H) is defined, and
(F‖G)‖H = F‖(G‖H).

7

• A partial binary function called connection, mapping
an interface F and a set S of task sequences to an in-
terface F⊕S . The connection F⊕S is defined if TF

contains all tasks in the sequences in S , i.e., if for all
sequences π of S , every task τ of π is also an element
of TF . If F⊕S is defined, then SF⊕S = SF ∪ S ,
T+

F⊕S
= T+

F
, AF⊕S = AF , DF⊕S = DF , and

cF⊕S = cF .

For all interfaces F and all sets S1 and S2 of task se-
quences, if (F⊕S1)⊕S2 is defined, then (F⊕S2)⊕S1

is defined, and (F⊕S1)⊕S2 = F⊕(S1 ∪ S2) =
(F⊕S2)⊕S1. In addition, for all interfaces G , if
(F‖G)⊕S1 and F⊕S1 are defined, then (F⊕S1)‖G
is defined, and (F‖G)⊕S1 = (F⊕S1)‖G .

• A binary relation � between interfaces, called refine-
ment. An interface F ′ refines an interface F if (a)
SF ′ ⊇ SF , (b) T+

F ′ ⊆ T+
F

, and (c) for each valua-
tion vi of IF and each valuation v ′

o of OF ′ , there exists
a valuation v ′

i of IF ′ such that vi = v ′
i on IF , and both

implications φI
F
⇒ φI

F ′ and φO

F ′ ⇒ φO
F

are valid.

The relation � is reflexive and transitive.

One way to refine an interface is to apply the connection
operation. Formally, if F ′ = F⊕S is defined, then F ′ � F .
This statement is true because the refinement condition (a)
is satisfied since SF ′ = SF⊕S = SF ∪ S ⊇ SF , and (b)
since T+

F ′ = T+
F⊕S

= T+
F

. If in the refinement condition
(c) we take v ′

i(x) = 0 for each x ∈ IF ′ \ IF (i.e., the arrival
rate functions for all sequences from S \SF are 0), we have
φI

F ′ = φI

F
and φO

F ′ = φO

F
, and therefore F ′ � F .

As informally discussed in Sec. 3.1, an interface F =
(SF ,T+

F
,AF , DF , cF) can also be refined by increasing

the arrival rate function for a task, or decreasing the de-
lay of a task, or decreasing the capacity function. In
the first case, if F ′ = (SF ,T+

F
,AF ′ , DF , cF) and if

AF ′(τ) ≥ AF (τ) for each τ ∈ TF , then F ′ � F . In
this case the refinement condition (c) is satisfied because
for every valuation of PF , from Eq. 1 it follows φI

F
=

φI (SF ,AF , DF , cF) ⇒ φI (SF ,AF ′ , DF , cF) = φI

F ′ , and
from Eq. 2 it follows φO

F ′ = φO (SF , DF) = φO
F

. Similar
arguments can be presented in other two cases. Namely,
if F ′ = (SF ,T+

F
,AF , DF ′ , cF) and DF ′(τ) ≤ DF (τ)

for each τ ∈ TF , then F ′ � F . Also, if F ′ =
(SF ,T+

F
,AF , DF , cF ′) and cF ′ ≤ cF , then F ′ � F .

The following proposition justifies the independent im-
plementability property discussed in Sec. 4.2.

Proposition 1 For all interfaces F , F ′, and G , and all sets
S of task sequences,

1. If F‖G is defined and F ′ � F , then F ′‖G is defined
and F ′‖G � F‖G .

2. If F⊕S is defined and F ′ � F , then F ′⊕S is defined
and F ′⊕S � F⊕S .

Proof. We sketch only the proof for part 2. The proof for
part 1 is simpler, and similar. To simplify notation, we first
introduce the following predicates: φr

F
= (r ≥ cF), φi

F
=

∧

τ∈TF
(
∑

π=π1·τ ·π2∈SF
i
DF (π1)
π ≤ AF (τ)), and φO

F ,S =
∧

π∈S
(oπ ≤ i

DF (π)
π). Note that φI

F
= (φr

F
∧ φi

F
).

If F⊕S is defined, then TF contains all tasks in all se-
quences of S . Since TF ′ ⊇ TF , the same is true for TF ′ ,
and therefore the interface F ′⊕S is defined. From the def-
initions of interface connection and refinement, it follows
that SF ′⊕S ⊇ SF⊕S and T+

F ′⊕S
⊆ T+

F⊕S
. If F ′ � F ,

then for each valuation on IF , there exists a valuation on I ′
F

such that the implication φI
F

⇒ φI

F ′ is valid, because both
φr
F
⇒ φr

F ′ and φi
F
⇒ φi

F ′ are valid. If φr
F
⇒ φr

F ′ is valid
for each value of r ∈ IF , then cF ≥ cF ′ , and therefore
cF⊕S = cF ≥ cF ′ = cF ′⊕S . Consequently, for each r ,
the implication φr

F⊕S
⇒ φr

F ′⊕S
is valid. If F ′ � F , then

also the implication φO

F ′ ⇒ φO
F

is valid, because for each
sequence π of SF , the predicate oπ ≤ i

DF′ (π)
π implies the

predicate oπ ≤ i
DF (π)
π . It follows that i

D
F′ (π)

π ≤ i
DF (π)
π ,

i.e., DF ′(π) ≤ DF (π) for each sequence π ∈ SF . Since
the single-task sequence π = τ is in SF for each τ ∈ TF ,
we have DF ′(τ) ≤ DF (τ). Similarly, from φi

F
⇒ φi

F ′ ,
we obtain AF ′(τ) ≥ AF (τ) for each τ ∈ TF . For a given
τ ∈ TF⊕S , if

∑

π=π1·τ ·π2∈SF
i
DF (π1)
π ≤ AF (τ), and if we

take iπ = 0 for each π ∈ SF ′ \ (SF ∪ S), we obtain
∑

π∈SF′⊕S

iDF′ (π1)
π ≤

∑

π∈SF⊕S

iDF (π1)
π ≤ AF (τ) ≤ AF ′(τ).

Consequently, φi
F⊕S

⇒ φi
F ′⊕S

, and therefore φI
F⊕S

⇒
φI

F ′⊕S
. Since DF ′(π) ≤ DF (π) also for each sequence

π ∈ S , it follows that the implication φO

F ′,S ⇒ φO

F ,S is
valid. If both the predicate φO

F ′⊕S
= (φO

F ′ ∧ φO

F ′ ,S) and the
implication φO

F ′ ⇒ φO
F

are valid, then φO
F⊕S

= φO
F
∧ φO

F ,S

is valid, and hence φO

F ′⊕S
⇒ φO

F⊕S
is valid. 2

Let f(F1, ...,Fk,S1, ...,Sl) be the interface computed
by applying finitely many composition and connec-
tion operations on the interfaces F1, ...,Fk and task
sequences S1, ...,Sl. From Prop. 1 it follows that
this interface can be refined through independent re-
finement of the interfaces Fj , i.e., if F ′

j � Fj for
j = 1, ..., k, then f(F ′

1, ...,F
′
k ,S1, ...,Sl) is defined and

f(F ′
1, ...,F

′
k,S1, ...,Sl) � f(F1, ...,Fk,S1, ...,Sl).

4 Real-Time Component-Based Design

We illustrate on a real-time system example how the in-
terface formalism supports incremental design and indepen-
dent implementability. In this section we allow for a more

8

general form of an interface than the one formally presented
in Sec. 3. Namely, we assume that a component may pro-
vide multiple levels of service for the task sequences it im-
plements. At any time the component may change from the
current to any other level of service. This is a simple exten-
sion towards a stateful interface formalism. We require that
at all levels of service the component implements the same
set of task sequences. Let F denote a single-level interface
as defined in Sec. 3. Formally, a multi-level interface F is a
finite set of single-level interfaces such that if F1,F2 ∈ F ,
then SF1

= SF2
. In particular, a multi-level interface F

is specified with tuples (AF , DF , cF) for each single-level
interface F ∈ F . Let mF be the number of service levels
provided by F , i.e., the number of elements of the set F .

Two multi-level interfaces F and G are compatible if
there exist a level of service of F and a level of service
of G that are compatible, i.e., if there exist F ∈ F and
G ∈ G such that F‖G is defined. In that case, the compo-
sition F‖G is defined and F‖G = {F‖G | F ∈ F , G ∈
G , F‖G is defined}. Therefore, in the worst case, check-
ing compatibility requires O(mF·mG) time. The connection
operator on F applies the operator on each single-level in-
terface in F , i.e., F⊕S = {F⊕S | F ∈ F}. A multi-level
interfaceF ′ refines F , if F ′ can be substituted forF in each
level of service of F , i.e., if for each F ∈ F , there exists
F ′ ∈ F ′ such that F ′ � F .

4.1 Incremental Design

Since the interface composition is associative, the or-
der in which we compose components makes no difference.
Moreover, this means that compatibility can be checked
even before all interfaces are fully specified, i.e., before the
system becomes closed. Formally, we can check whether n
interfaces are compatible, i.e., whether F1‖ . . . ‖Fn−1‖Fn

is defined, by constructing (F1‖ . . . ‖Fi−1)‖Fi for i =
1, . . . , n. The computational complexity of this operation
is typically less than mF1

· . . . · mFn
because incompatible

levels of service are eliminated as soon as possible. This
procedure can be further improved by composing interfaces
in a tree-like order, rather than in a linear order.

We demonstrate the efficiency of incremental design on a
real-time robotic application adapted from [6]. In this real-
time system, there are five task sequences πi (i = 1, . . . , 5)
using a total of 13 tasks, as shown in the underlying graph in
Fig. 10. Let S4 = {π1, π2, π3, π4} and S5 = S4∪{π5}. The
system is planned for three levels of service: 80%, 100%,
and 120% of the nominal arrival rates for πi, which are
given in the ρ row of Tab. 3. The execution times of all
tasks are also part of the system specification. The other
task data in Tab. 3 are computed assuming that a sequence
delay is inversely proportional to its rate. Similar tables are
computed for the other two levels of service.

π π1 π2 π3 π4 π5

τ τ11 τ12 τ13 τ21 τ22 τ23 τ31 τ32 τ41 τ42 τ43 τ51 τ52
ρ 0.015 0.031 0.124 0.062 0.156
e 0.2 1.2 1.0 1.0 2.0 0.3 0.8 1.2 1.0 0.5 0.5 0.1 0.5
d 10.48 32.05 21.56 5.79 16.37 9.88 2.30 5.71 3.33 7.51 5.17 1.55 4.86
σ 1 1.16 1.64 1 1.15 1.59 1 1.19 1 1.14 1.58 1 1.23

Table 3. Task data for nominal arrival rates

Fig. 10 and 12 show two different component decompo-
sitions of the system. Let the system be composed of the
components A, B, and C as shown in Fig. 10. The capacity
functions of the corresponding interfaces FA, FB , and FC

are computed by the task composition procedure for each of
the three levels of service (mFA

= mFB
= mFC

= 3). The
results of checking for interface compatibility are shown in
Fig. 11. Each table row represents a combination of levels
of components for which the composition is defined. In-
stead of showing entire capacity functions, in the last two
columns of the table we characterize the functions with two
numbers: c(0) is the resource capacity at delay 0, and δ1 is
the delay at which the capacity has to be 1. The interface
(FA‖FB)⊕S4 consists of 7 levels of service, since 2 are
eliminated due to incompatibility. Similarly, the interface
for the entire system consists of 10, and not 33 = 27, levels
of service.

C

A B
π

1

π
2

π
3

π
4

π
5

Figure 10. (FA‖FB‖FC)⊕S5

If the system is composed of the components a, b, and C,
as shown in Fig. 12, the resulting interfaces (Fa‖Fb)⊕S4

and (Fa‖Fb‖FC)⊕S5 are shown in Fig. 13. The table
shows that with this composition only three combinations
of service levels are attainable, even though the proper-
ties of the arrival sequences and tasks are the same as for
Fig. 10. This confirms that, although interface composition
is associative, task composition is not. In particular, even
though ((FA‖FB)‖FC)⊕S5 = (FA‖(FB‖FC))⊕S5, and
((Fa‖Fb)‖FC)⊕S5 = (Fa‖(Fb‖FC))⊕S5, the interfaces
(FA‖FB‖FC)⊕S5 and (Fa‖Fb‖FC)⊕S5 are not equiva-
lent.

9

(FA‖FB)⊕S4

j FA FB c(0) δ1

1 80 80 0.71 1.80
2 80 100 0.75 1.60
3 80 120 0.78 1.30
4 100 80 0.86 0.80
5 100 100 0.89 0.60
6 100 120 0.92 0.40
7 120 80 0.98 0.00

(FA‖FB‖FC)⊕S5

j FA FB FC c(0) δ1

1 80 80 80 0.83 1.10
2 80 80 100 0.86 0.90
3 80 80 120 0.89 0.70
4 80 100 80 0.86 0.90
5 80 100 100 0.89 0.70
6 80 100 120 0.92 0.40
7 80 120 80 0.89 0.60
8 80 120 100 0.92 0.40
9 80 120 120 0.95 0.30

10 100 80 80 0.97 0.10

Figure 11. Levels of service for (FA‖FB)⊕S4

and (FA‖FB‖FC)⊕S5

C

a b
π

1

π
2

π
3

π
4

π
5

Figure 12. (Fa‖Fb‖FC)⊕S5

4.2 Independent Implementability

The formalism presented in Sec. 3 enables composi-
tional refinement, i.e., it enables the independent refine-
ment of component interfaces by component implementa-
tions. From Prop. 1 it follows that in order to refine a given
composition of interfaces, it suffices to independently re-
fine each interface and to compose the obtained refinements.
The higher efficiency of such a procedure lies in the fact
that now refinement checks involve smaller interfaces. In
that way, a single complex problem is reduced to multiple
simpler problems.

Suppose that the robotic application from the previous
subsection is planned for the task sequence arrival rates that
are 80% of the nominal rates, and that it is given a full re-
source. Namely, assume that the specification for the ap-
plication is given as a single-level interface F , with the

(Fa‖Fb)⊕S4

j Fa Fb c(0) δ1

1 80 80 0.82 1.00
2 80 100 0.91 0.50
3 100 80 0.91 0.40
4 120 80 0.99 0.00

(Fa‖Fb‖FC)⊕S5

j Fa Fb FC c(0) δ1

1 80 80 80 0.94 0.30
2 80 80 100 0.97 0.20
3 80 80 120 1.00 0.00

Figure 13. Levels of service for (Fa‖Fb)⊕S4

and (Fa‖Fb‖FC)⊕S5

task arrival rate functions AF and delays DF computed
as in Tab. 3 for the 80% of rates, and with the capacity
function cF such that cF (0) = 1. The design goal is to
implement the system as a composition of real-time com-
ponents that refine the specification interface F . To that
purpose the specification is represented as the composition
F = (Fa‖Fb‖FC)⊕S5 from Fig. 12 of the three interfaces
Fa, Fb, and FC , aimed for independent implementation. In
addition, assume that an initial analysis shows that the re-
source should be distributed 45% to the interface Fa, 40%
to the interface Fb, and 15% to the interface FC . Hence,
cFa

(0) = 0.45, cFb
(0) = 0.4, and cFC

(0) = 0.15.
When in the implementation process the wcet’s become

known, the task composition procedure can be used to
check for the actual resource requirements of the compo-
nents. Moreover, the three interfaces can be refined by in-
creasing the arrival rates of some task sequences. In par-
ticular, it can be shown that the interface F ′

C , which is ob-
tained from the interface FC by increasing the rate of the
task sequence π5 to 102% of the nominal rate, still satisfies
cF ′

C
(0) = 0.15. Therefore, it follows F ′

C � FC . Simi-
larly, 82% of the nominal rate for π4 in interface F ′

a results
in cF ′

a
(0) = 0.45, and 110% of the nominal rate for π4

in interface F ′
b results in cF ′

b
(0) = 0.4. Hence, F ′

a � Fa

and F ′
b � Fb. According to Prop. 1, the composition of

interface refinements, F ′ = (F ′
a‖F

′
b‖F

′
C)⊕S5, refines the

original specification interface F . In particular, the refined
interface F ′ allows for higher rates of the task sequences
π4 and π5 than 80% of their nominal rates that is originally
specified in F .

5 Conclusion

We showed how a group of tasks, each defined with
an arrival rate, a delay, and a worst-case execution re-
quirement, can be abstracted into a bounded-delay resource
model. In order to use such abstracted components in
a larger real-time system comprising of multiple task se-
quences, we introduced component interfaces. A formal in-

10

terface algebra allows for automatic procedures that help
in component integration. We motivated and analyzed two
properties of such a framework, incremental design and
independent implementability. The composition with ab-
stracted components inevitably incurs higher resource uti-
lization and, therefore, the effectiveness of composition can
be compromised. We leave the question of how tight the
entire framework is for future work. Richer task models,
such as the one in which the underlying task precedence
graph is a DAG, are also worth investigating. In addition,
interesting problems for future investigations arise when
more complex, temporally adaptive interactions between
real-time components require an automaton-based interface
formalism.

References

[1] L. Almeida and P. Pedreiras. Scheduling within tem-
poral partitions: Response-time analysis and server
design. In EMSOFT, pages 95–103. ACM, 2004.

[2] L. de Alfaro and T. A. Henzinger. Interface au-
tomata. In ESEC / SIGSOFT FSE, pages 109–120.
ACM, 2001.

[3] L. de Alfaro and T. A. Henzinger. Interface theories
for component-based design. In EMSOFT, volume
2211 of Lecture Notes in Computer Science, pages
148–165. Springer, 2001.

[4] L. de Alfaro, T. A. Henzinger, and M. Stoelinga.
Timed interfaces. In EMSOFT, volume 2491 of
Lecture Notes in Computer Science, pages 108–122.
Springer, 2002.

[5] Z. Deng and J. W.-S. Liu. Scheduling real-time ap-
plications in an open environment. In RTSS, pages
308–319. IEEE Computer Society, 1997.

[6] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Tim-
ing analysis for fixed-priority scheduling of hard real-
time systems. IEEE Transactions on Software Engi-
neering, 20(1):13–28, 1994.

[7] G. Lipari and E. Bini. Resource partitioning among
real-time applications. In ECRTS, pages 151–158.
IEEE Computer Society, 2003.

[8] A. K. Mok and A. X. Feng. Towards compositional-
ity in real-time resource partitioning based on regular-
ity bounds. In RTSS, pages 129–138. IEEE Computer
Society, 2001.

[9] A. K. Mok and A. X. Feng. A model of hierarchi-
cal real-time virtual resources. In RTSS, pages 26–35.
IEEE Computer Society, 2002.

[10] A. K. Mok, A. X. Feng, and D. Chen. Resource par-
tition for real-time systems. In RTAS, pages 75–84.
IEEE Computer Society, 2001.

[11] J. Regehr and J. A. Stankovic. Hls: A framework for
composing soft real-time schedulers. In RTSS, pages
3–14. IEEE Computer Society, 2001.

[12] I. Shin and I. Lee. Periodic resource model for com-
positional real-time guarantees. In RTSS, pages 2–13.
IEEE Computer Society, 2003.

[13] I. Shin and I. Lee. Compositional real-time scheduling
framework. In RTSS, pages 57–67. IEEE Computer
Society, 2004.

[14] E. Wandeler and L. Thiele. Real-time interfaces for
interface-based design of real-time systems with fixed
priority scheduling. In EMSOFT, pages 80–89. ACM,
2005.

[15] S. Wang, S. Rho, Z. Mai, R. Bettati, and W. Zhao.
Real-time component-based systems. In RTAS, pages
428–437. IEEE Computer Society, 2005.

11

