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Abstract. A hybrid system is a dynamical system with both discrete and continuous state changes.

For analysis purposes, it is often useful to abstract a system in a way that preserves the properties

being analyzed while hiding the details that are of no interest. We show that interesting classes of

hybrid systems can be abstracted to purely discrete systems while preserving all properties that are

de�nable in temporal logic. The classes that permit discrete abstractions fall into two categories.

Either the continuous dynamics must be restricted, as is the case for timed and rectangular hybrid

systems, or the discrete dynamics must be restricted, as is the case for o-minimal hybrid systems. In

this paper, we survey and unify results from both areas.
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1. Introduction

Hybrid systems combine both digital and analog components, in a way that is useful for the analysis

and design of distributed, embedded control systems. Hybrid systems have been used as mathemat-

ical models for many important applications, such as automated highway systems [40, 50, 79], air

tra�c management systems [49, 51, 74], embedded automotive controllers [12, 59], manufacturing

systems [64], chemical processes [28], robotics [6, 71], real-time communication networks, and real-

time circuits [53]. Their wide applicability has inspired a great deal of research from both control

theory and theoretical computer science [1, 2, 7, 9, 10, 29, 31, 52, 75].

Many of the above motivating applications are safety critical, and require guarantees of safe operation.

Consequently, much research focuses on formal analysis and design of hybrid systems. Formal analysis
1
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of hybrid systems is concerned with verifying whether a hybrid system satis�es a desired speci�cation,

like avoiding an unsafe region of the state space. The process of formal design consists of synthesizing

controllers for hybrid systems in order to meet a given speci�cation. Both directions have received

large attention in the hybrid systems community, and the reader is referred to [3, 11, 23, 25, 33, 42,

55, 73] for expositions to much of the research in the �eld.

In this paper, we are interested in the formal analysis of hybrid systems. The formal analysis of

large scale, hybrid systems is typically a very di�cult process due to the complexity and scale of the

system. This makes the use of computational or algorithmic approaches to the veri�cation of hybrid

systems very desirable, whenever possible. We are therefore interested in developing computational

procedures which, given a hybrid system and a desired property, will verify in a �nite number of

steps whether the system satis�es the speci�cation or not. Given a class of hybrid systems H, and

a class of desired properties P, a class of veri�cation problems is called decidable, if there exists a

computational procedure which, given any system H 2 H, and any property P 2 P, will decide in
a �nite number of steps whether H satis�es P . Decidability is not an issue in the veri�cation of

purely discrete systems modeled by �nite state machines, since in the worst case veri�cation can be

performed by exhaustively searching the whole state space. However, in the case of hybrid systems,

decidability is a central issue in algorithmic analysis, because of the uncountability of the state space.

The main focus of this paper is on identifying decidable veri�cation problems for hybrid systems.

A natural way to show that a class of analysis problems is decidable, is the process of abstraction.

Given a hybrid system and some desired property, one extracts a �nite, discrete system while pre-

serving all properties of interest. This is achieved by constructing suitable, �nite and computable

partitions of the state space of the hybrid system. By obtaining discrete abstractions which are �nite,

and preserve properties of interest, analysis can be equivalently performed on the �nite system, which

requires only a �nite number of steps. Checking the desired property on the abstracted system should

be equivalent to checking the property on the original system. Only if no equivalent abstraction can

be found, one may be content with a su�cient abstraction, where checking the desired property on

the abstracted system is su�cient for checking the property on the original system [20].

In this paper, we focus on equivalent discrete abstractions of hybrid systems along with the classes

of properties they preserve. We show that there are many interesting classes of hybrid systems

which can be abstracted by �nite systems for analysis purposes. Properties about the behavior of a

system over time are naturally expressible in temporal logics, such as Linear Temporal Logic (LTL)

and Computation Tree Logic (CTL) [26]. Preserving LTL properties leads to special partitions of

the state space given by language equivalence relations, whereas CTL properties are abstracted by

bisimulations. A detailed exposition to the use of various logics in hybrid systems can be found
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in [23]. Similar concepts and constructions, but from a hierarchical control perspective, can be found

in [16, 61, 62, 63].

There are immediate obstacles due to undecidability. For example, in [37] it was shown that checking

reachability (whether a certain region of the state space can be reached) is undecidable for a very

simple class of hybrid systems, where the continuous dynamics involves only variables that proceed

at two constant slopes. These results immediately imply that more general classes of hybrid systems

cannot have �nite bisimulation or language equivalence quotients. Therefore, our search for discrete

abstractions of hybrid systems is limited by this result. Given this limit, we show that hybrid systems

that can be abstracted fall into two classes. In the �rst class, the continuous behavior of the hybrid

system must be restricted, as in the case of timed automata [5], multirate automata [4, 58], and

rectangular automata [37, 68]. In the second class, the discrete behavior of the hybrid system must

be restricted, as in the case of order-minimal hybrid systems [44, 45, 46].

In this paper, we present in a uni�ed way all these results which collectively de�ne a very tight

boundary between decidable and undecidable questions about hybrid systems. We do not focus on

complexity issues or the implementation of these algorithms by veri�cation tools like Kronos [24],

Cospan [8], Upaal [48], and HyTech [35]. It should be noted that, in practice, the algorithms

implemented by the above tools work directly on the original system, and do not construct an

equivalent �nite abstraction �rst. However, the decidability results presented in this paper for �nite

abstractions provide correctness and termination arguments for the algorithms implemented by the

tools [37, 38, 39]. Therefore, the approach described in this paper should be understood as theoretical

background underlying the implementations.

More speci�cally, in Section 2, we introduce the reader to the notion of transition systems which

should be thought of as graphs with a possibly in�nite number of nodes (representing states) and

edges (representing transitions). Desired properties of transition systems will be expressed as for-

mulas in various temporal logics. We will review the important notions of language equivalences

and bisimulations of transition systems, along with temporal logic properties they preserve, namely,

Linear Temporal Logic and Computation Tree Logic. In Section 3, after a general de�nition of hybrid

systems, we describe the transition systems generated by our hybrid system model. This allows us

to apply the framework of Section 2 to the various classes of hybrid systems we consider in this

paper. We then immediately present some undecidability results, which provide a clear boundary

for applying the framework of Section 2. As a result, our search for decidable classes of hybrid

systems is limited by this boundary. This forces us to consider hybrid systems with either simple

continuous dynamics (Section 4), or simple discrete dynamics (Section 5). The latter are based on

various �rst-order logical theories. A brief introduction to �rst order logic is given in Appendix A.
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2. Transition Systems

Transition systems are graph models, possibly with an in�nite number of states or transitions.

De�nition 2.1 (Transition Systems). A transition system T = (Q;�;!; j=; Q0) consists of:

� A (possibly in�nite) set Q of states.

� A �nite alphabet � of propositions.

� A transition relation !� Q�Q.

� A satisfaction relation j=� Q��.

� A set Q0 � Q of initial states.

A state q1 is predecessor of a state q2, and q2 is a successor of q1, written q1 ! q2, if the transition

relation ! contains the pair (q1; q2). A state q satis�es a proposition �, written q j= �, if the

satisfaction relation j= contains the pair (q; �). The transition system T is �nite if the cardinality of

Q is �nite, and it is in�nite otherwise. We assume that every transition system is deadlock free, that

is, for every state q 2 Q, there exists a state q0 2 Q such that q ! q0.

A region is a subset P � Q of the states. The sets of predecessor and successor states of P are

Pre(P ) = fq 2 Q j 9p 2 P: q ! pg(2.1)

Post(P ) = fq 2 Q j 9p 2 P: p! qg(2.2)

The set of states that are accessible from P in two transitions is Post(Post(P )), and is denoted

Post2(P ). In general, Posti(P ) consists of the states that are accessible from P in i transitions.

Prei(P ) is de�ned similarly. Then

Pre�(P ) =
[
i2N

Prei(P )(2.3)

Post�(P ) =
[
i2N

Posti(P )(2.4)

are the set of states that are backward and forward reachable from P , that is, accessible in any number

of transitions. In particular, Post�(Q0) is the set of reachable states of the transition system T , and

is denoted by Reach(T ).

A problem that is of great interest for transition systems is the reachability problem. Given a

proposition � 2 �, we write [[�]] = fq 2 Q j q j= �g for the set of states that satisfy �.

Problem 2.2 (Reachability Problem). Given a transition system T = (Q;�;!; j=; Q0) and a propo-

sition � 2 �, is Reach(T )\ [[�]] 6= ; ?
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If the proposition � encodes an undesirable or unsafe region of the state space, then solving reacha-

bility corresponds to checking if the system is safe. In this paper, we are interested in computational

approaches to the solution of the reachability problem. The following algorithm computes the reach-

able space until either a state satisfying � is reached, or no more reachable states can be added.

Algorithm 1 (Forward Reachability Algorithm)

initially R := Q0;

while true do

if R \ [[�]] 6= ; then return \unsafe" end if;

if Post(R) � R then return \safe" end if;

R := R [ Post(R)

end while

A backward reachability algorithm which starts with [[�]] and checks whether Pre�([[�]]) \ Q0 6= ;
can be similarly constructed. Such iterative algorithmic approaches to checking system properties

are guaranteed to terminate if the state space of the transition system is �nite, since in the worst

case they can only visit a �nite number of states. If the state space is in�nite, then there is, in

general, no guarantee that the forward reachability algorithm will terminate within a �nite number

of iterations of the loop. It could continue adding states forever without ever reaching the target

region [[�]] or a �xed point R such that Post(R) � R. In this paper, our goal is to �nd classes

of in�nite transition systems whose analysis can be performed on equivalent but �nite transition

systems. This is accomplished by constructing suitable �nite quotients or discrete abstractions of the

original system in the sense that they preserve the properties of interest while omitting detail.

In addition to reachability, the desired system speci�cation may require more detailed system prop-

erties. For example, one may wish to encode the requirement that a system failure is eventually

followed by a return to the normal mode of operation. More abstractly, if the transition system

visits a region P1, encoding a failure, then eventually it will reach a region P2, encoding normal

operation. Such properties can be encoded as formulas in temporal logic [65]. Formulas of tem-

poral logic are thus used to formally specify properties of systems, such as reachability, invariance,

or response properties. In the sequel, after de�ning the notion of quotient transition systems, two

kinds of equivalence relations, language equivalences and bisimulations, are considered along with

two popular temporal logics, Linear Temporal Logic (LTL) and Computation Tree Logic (CTL),

whose properties they preserve.

An equivalence relation �� Q�Q on the state space is proposition preserving if for all states p; q 2 Q

and all propositions � 2 �, if p � q and p j= �, then q j= �; that is, the region [[�]] is a union of

equivalence classes. Given a proposition-preserving equivalence relation �, the de�nition of quotient
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transition system T=� is natural. Let Q=� denote the quotient space, that is, the set of equivalence

classes. For a region P , we denote by P=� the collection of all equivalence classes which intersect P .

The transition relation !� on the quotient space is de�ned as follows: for P1; P2 2 Q=�, we have

P1 !� P2 i� there exist two states q1 2 P1 and q2 2 P2 such that q1 ! q2. The satisfaction relation

j=� on the quotient space is de�ned as follows: for P 2 Q=�, we have P j=� � i� there exists a state

q 2 P such that q j= �. The quotient transition system is then T=� = (Q=�;�;!�; j=�; Q0=�).

2.1. Language equivalences preserve linear temporal properties. Let q 2 Q be a state of

the transition system T = (Q;�;!; j=; Q0). Given a state q 2 Q, let �q = f� 2 � j q j= �g be

the set of propositions that are satis�ed by q. A trajectory generated from q is an in�nite sequence

q0q1q2 : : : such that q0 = q and for all i 2 N, we have qi ! qi+1. This trajectory de�nes the word

�q0�q1�q2 : : : The set of words that are de�ned by trajectories generated from q is denoted by L(q),

and called the language of the state q. The set
S
q2Q0

L(q) of words that are de�ned by trajectories

generated from initial states is denoted by L(T ), and called the language of the transition system T .

De�nition 2.3 (Language Equivalences). Let T be a transition system with state space Q. An equiv-

alence relation �L on Q is a language equivalence of T if for all states p; q 2 Q, if p �L q, then

L(p) = L(q).

Note that every language equivalence is proposition preserving. Every language equivalence �L

partitions the state space and gives rise to the quotient transition system T=�L, which is called a

language equivalence quotient of T . The formulas of Linear Temporal Logic (LTL) are interpreted over

words, and hence the properties expressed in LTL are preserved by language equivalence quotients.

De�nition 2.4 (Linear Temporal Logic [66, 54]). The formulas of Linear Temporal Logic (LTL) are

de�ned inductively as follows:

� Propositions Every proposition � is a formula.

� Formulas If �1 and �2 are formulas, then the following are also formulas:

�1 _ �2 :�1 
 �1 �1U�2

The formulas of LTL are interpreted over in�nite sequences of sets of propositions. Consider a

word w = �0�1�2 : : : , where each �i is a set of propositions. The satisfaction of a proposition

� at position i 2 N of word w is denoted by (w; i) j=L � (which should not be confused with the

satisfaction relation j= which tells us whether a state satis�es a proposition), and holds i� � 2 �i.

We can then recursively de�ne the semantics for any LTL formula as follows:

� (w; i) j=L �1 _ �2 if either (w; i) j=L �1 or (w; i) j=L �2

� (w; i) j=L :�1 if (w; i) 6j=L �1
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� (w; i) j=L 
�1 if (w; i+ 1) j= �1

� (w; i) j=L �1U�2 if there is a j � i such that (w; j) j=L �2 and for all i � k < j, we have

(w; k) j=L �1

A word w satis�es an LTL formula � if (w; 0) j=L �. From : and _, which stand for negation and

disjunction, respectively, we can also de�ne conjunction ^, implication ), and equivalence ,. The

temporal operators 
 and U are called the next and until operators. The 
�1 formula holds for a

word �0�1�2 : : : i� the subformula �1 is true for the su�x �1�2 : : : The formula �1U�2 intuitively
expresses the property that �1 is true until �2 becomes true. Using the next and until operators, we

can also de�ne the following temporal operators in LTL:

� Eventually: 3� = true U�
� Always: 2� = :3:�

Therefore, 3� indicates that � becomes eventually true, whereas 2� indicates that � is true at all

positions of a word. The LTL formula 23� is true for words that satisfy � in�nitely often, whereas

a word satis�es 32� if � becomes eventually true and then stays true forever.

A transition system T satis�es an LTL formula � if some word in the language L(T ) satis�es �. For

example, if � is a proposition encoding an unsafe region, then violation of safety can be expressed as

3�. Violation of the more elaborate requirement that visiting region [[�1]] will eventually be followed

by visiting region [[�2]], is expressed by the formula 3(�1 ^ 2:�2).

Problem 2.5 (LTL Model Checking Problem). Given a transition system T and an LTL formula �,

determine if T satis�es �.

Since reachability can be expressed by an LTL formula of the form 3�, it is immediate that Problem

2.2 is contained in Problem 2.5. Given the de�nition of language equivalence, the following theorem

should come as no surprise.

Theorem 2.6 (Language equivalences preserves LTL properties). Let T be a transition system and

let �L be a language equivalence of T . Then T satis�es the LTL formula � if and only if the language

equivalence quotient T=�L satis�es �.

Therefore, given a transition system T and an LTL formula �, we can equivalently perform the model

checking problem on T=�L. In general, language equivalence quotients are not �nite. If, however,

we are given a �nite language equivalence quotient of a transition system T , then using the above

theorem, LTL model checking can be decided for T .

2.2. Bisimulations preserve branching temporal properties. We now de�ne a di�erent way

of partitioning the state space along with a class of properties it preserves.
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De�nition 2.7 (Bisimulations [57]). Let T = (Q;�;!; j=; Q0) be a transition system. A proposition-

preserving equivalence relation �B on Q is a bisimulation of T if for all states p; q 2 Q, if p �B q,

then for all states p0 2 Q, if p! p0, then there exists a state q0 2 Q such that q ! q0 and p0 �B q0.

If �B is a bisimulation, then the quotient transition system T=�B is called a bisimulation quotient of

T . The crucial property of bisimulations is that for every equivalence class P 2 Q=�B , the predecessor

region Pre(P ) is a union of equivalence classes. Therefore, if P1; P2 2 Q=�B , then Pre(P1) \ P2 is

either the empty set or all of P2. It is not di�cult to check that every bisimulation is a language

equivalence, but a language equivalence is not necessarily a bisimulation.

Computation Tree Logic (CTL) is a temporal logic, which contrary to LTL, contains existential

quanti�ers that range over trajectories.

De�nition 2.8 (Computation Tree Logic [19, 69]). The formulas of Computation Tree Logic (CTL)

are de�ned inductively as follows:

� Propositions Every proposition � is a formula.

� Formulas If �1 and �2 are formulas, then the following are also formulas:

�1 _ �2 :�1 9
 �1 92�1 �19U�2

The di�erence between the semantics of LTL and CTL is that LTL formulas are interpreted over

words, whereas CTL formulas are interpreted over the tree of trajectories generated from a given

state of a transition system. More precisely, the state q0 of the transition system T satis�es the

proposition � if q0 j= �, as usual, and the semantics of any CTL formula is then recursively de�ned

as follows:

� q0 j= �1 _ �2 if either q0 j= �1 or q0 j= �2

� q0 j= :�1 if q0 6j= �1

� q0 j= 9
 �1 if there exists a state q1 2 Q such that q0 ! q1 and q1 j= �1

� q0 j= 92�1 if there exists a trajectory q0q1q2 : : : generated from q0 such that for all i � 0, we

have qi j= �1

� q0 j= �19U�2 if there exists a trajectory q0q1q2 : : : generated from q0 such that qi j= �2 for some

i � 0, and for all 0 � j < i, we have qj j= �1

As in LTL, we can de�ne ^, ), and , from : and _. The temporal operators 9
, 92, and 9U are

called possibly-next, possibly-always, and possibly-until, as they refer to the existence of a trajectory

from a given state. The possibly-eventually operator 93� is de�ned as true 9U�. Additional temporal

operators, which refer to all trajectories from a given state, can be de�ned as follows:

� Inevitably-next: 8
 � = :9
 :�
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� Inevitably-always: 82� = :93:�
� Inevitably-eventually: 83� = :92:�

A transition system T satis�es a CTL formula � if some initial state of T satis�es �. For example,

reachability can be captured in CTL by the formula 93�. The CTL formula 9382� encodes the

requirement that there is some reachable state from which all trajectories stay within the region [[�]].

Problem 2.9 (CTL Model Checking Problem). Given a transition system T and a CTL formula

�, determine if T satis�es �.

As in LTL model checking, Problem 2.2 is contained in Problem 2.9. However, Problem 2.5 is

incomparable to Problem 2.9, as there are requirements which can be expressed in LTL but not in

CTL (such as the requirement 23�), and there are requirements which can be expressed in CTL but

not in LTL (such as the requirement 9382�) [26]. The following theorem shows that bisimulations

preserve CTL properties.

Theorem 2.10 (Bisimulation preserves CTL properties [15]). Let T be a transition system and let

�B be a bisimulation of T . Then T satis�es the CTL formula � if and only if the bisimulation

quotient T=�B satis�es �.

Therefore, CTL model checking for T can be performed equivalently on T=�B . Bisimulations can

be computed using the following algorithm. If the algorithm terminates within a �nite number of

iterations of the loop, then there is a �nite bisimulation quotient, and the algorithm returns a �nite

partition of the state space which is the coarsest bisimulation (i.e., the bisimulation with the fewest

equivalence classes).

Algorithm 2 (Bisimulation Algorithm [14, 41])

initially Q=�B := f[[�]] j � 2 �g;
while there exist P; P 0 2 Q=�B such that ; ( P \ Pre(P 0) ( P do

P1 := P \ Pre(P 0); P2 = P n Pre(P 0);

Q=�B := (Q=�B n fPg) [ fP1; P2g
end while;

return Q=�B

Therefore, in order to show that CTL model checking can be decided for a transition system T , it

su�ces to show that the bisimulation algorithm terminates on T , and that each step of the algorithm

is computable or e�ective. This means that we must be able to represent (possibly in�nite) state sets

symbolically, perform boolean operations, check emptiness, and compute the predecessor operation

Pre on the symbolic representation of state sets [33].
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Even though LTL and CTL are incomparable, they are both sublogics of CTL�, a more expressive

temporal logic, and of a �xed point logic called the �-calculus [23, 26]. Bisimulations preserve not

only CTL properties according to Theorem 2.10, but also all CTL� and �-calculus properties [15].

3. Hybrid Systems

In this section, we apply the framework presented in Section 2 to transition systems generated by

hybrid systems. We then immediately present various barriers for obtaining �nite discrete abstrac-

tions for general hybrid systems, by showing classes of hybrid systems whose reachability problems

are undecidable. We start with a de�nition of hybrid systems.

De�nition 3.1 (Hybrid Systems [3]). A hybrid system is a tuple H = (V; n;X0; F; Inv;R) with the

following components:

� V is a �nite set of locations, and n � 0 is a nonnegative integer called the dimension of H.

The state space of H is X = V � Rn. Each state thus has the form (`; x), where ` 2 V is the

discrete part of the state, and x 2 Rn is the continuous part.

� X0 � X is the set of initial states.

� F : X ! 2R
n

assigns to each state (`; x) 2 X a set F (`; x) � Rn which constrains the time

derivative of the continuous part of the state. Thus in discrete location `, the continuous part

of the state satis�es the di�erential inclusion _x 2 F (`; x).

� Inv: V ! 2R
n

assigns to each location ` 2 V an invariant set Inv(`) � Rn which constrains

the value of the continuous part of the state while the discrete part is `.

� R � X �X is a relation capturing discontinuous state changes.

We refer to the n individual coordinates of the continuous part Rn of the state space as real-valued

variables, and we view the continuous part x = (x1; : : : ; xn) of a state as an assignment of values to

the variables.

Hybrid systems are typically represented as �nite graphs with vertices V , and edges E de�ned by

E = f(`; `0) 2 V � V j ((`; x); (`0; x0)) 2 R for some x 2 Inv(`) and x0 2 Inv(`0)g:

With each vertex ` 2 V we associate an initial set de�ned as

Init(`) = fx 2 Inv(`) j (`; x) 2 X0g:

With each edge e = (`; `0) 2 E we associate a guard set de�ned as

Guard(e) = fx 2 Inv(`) j ((`; x); (`0; x0)) 2 R for some x0 2 Inv(`0)g
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and a set-valued reset map

Reset(e; x) = fx0 2 Inv(`0) j ((`; x); (`0; x0)) 2 Rg:

Trajectories of the hybrid system H originate at any initial state (`; x) 2 X0 and consist of con-

catenations of continuous 
ows and discrete jumps. Continuous 
ows keep the discrete part ` of

the state constant, and the continuous part evolves over time according to the di�erential inclusions

_x 2 F (`; x), as long as x remains inside the invariant set Inv(`). If during the continuous 
ow, it

happens that x 2 Guard(e) for some e = (`; `0) 2 E, then the edge e becomes enabled. The state of

the hybrid system may then instantaneously jump from (`; x) to any (`0; x0) with x0 2 Reset(e; x).

Then the process repeats, and the continuous part of the state evolves according to the di�erential

inclusions _x 2 F (`0; x). Even though De�nition 3.1 places no well-posedness conditions on the class

of hybrid systems we consider, the results presented in this paper will assume strong restrictions

regarding the types of X0, F , Inv, and R which are permitted.

Example 3.2. Figure 1 is a graphical illustration of a special kind of hybrid system, called a timed

automaton, which is a �nite state machine coupled with real-valued clock variables. This timed

automaton consists of two locations `1 and `2, and two variables x and y which always evolve in R

under the di�erential equations _x = 1 and _y = 1. Therefore x and y simply measure time. The

initial state of the system is (`1; x = 0; y = 0) and the invariant sets associated with the locations

`1 and `2 are x < 5 and y < 10, respectively. There are two edges, e1 = (`1; `2) and e2 = (`2; `1).

The guard of e1 is the set x > 4 and the reset map is R(e1; x; y) = f(10; 3)g, whereas the guard and

reset of e2 are y > 9 and R(e2; x; y) = f(x; 0)g, respectively. Notice that the identity map on the x

variable on the e2 edge is suppressed from Figure 1. A simple reachability speci�cation may require

that the timed automaton never enters the region f(`2; x; y) j x > 7 and y < 6g.

.
x = 1.
y = 1

.
x = 1.
y = 1

y = 3

x = 0
y = 0

x = 10x>4   

x < 5 y < 10

  y=0 y > 9 

2

1

2e

e
1l l

Figure 1. A timed automaton

3.1. Rectangular, multirate, and timed automata. Consider the space Rn with the variables

x1; : : : ; xn. A rectangular set is de�ned by a conjunction of linear (in)equalities of the form xi � c,
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where � is one of <;�;=;�; >, and c 2 Q. For a rectangular set B, let Bi be its projection onto

the i-th coordinate. Thus a rectangular set B � Rn is of the form B = B1 � � � � � Bn, where each

Bi is a bounded or unbounded interval.

De�nition 3.3 (Rectangular Automata [37]). A rectangular automaton is a hybrid system that sat-

is�es the following constraints.

� For every location ` 2 V , the sets Init(`) and Inv(`) are rectangular sets.

� For every location ` 2 V , there is a rectangular set B` such that F (`; x) = B` for all x 2 Rn.

� For every edge e 2 E, the set Guard(e) is a rectangular set, and there is a rectangular set Be

and a subset Je � f1; : : : ; ng such that for all x 2 Rn,

Reset(e; x) = f(x01; : : : ; x0n) 2 Rn j for all 1 � i � n, if i 2 Je then x0i 2 Be
i else x0i = xig:

Therefore, in a rectangular automaton, the derivative of each variable stays between two �xed bounds,

which may be di�erent in di�erent locations. This is because in each location `, the di�erential

inclusions are constant and coordinate-wise decoupled, that is, _xi 2 B`
i for all 1 � i � n. With each

discrete jump across an edge e, the value of a variable xi is either left unchanged (if i 62 Je), or reset

nondeterministically to a new value within some �xed, constant interval Be
i (if i 2 Je). An example

of a rectangular automaton is shown in Figure 2.

A rectangular automaton is initialized if for every edge e = (`; `0) 2 E and all 1 � i � n, if

Reset(e; x)i = xi, then F (`0; x)i = F (`; x)i. In other words, if after a discrete jump the bounds on

the derivative of a variable change, then its value must be nondeterministically reset (\reinitialized")

within a �xed interval. The rectangular automaton of Figure 2 is initialized.

De�nition 3.4 (Multirate Automata [3]). A multirate automaton is a rectangular automaton that

satis�es the following constraints:

� For each location ` 2 V , the set Init(`) is either empty or a singleton set.

� For each edge e 2 E, the set Be is a singleton set.

� For each location ` 2 V , the set B` is a singleton set.

Therefore, in a multirate automaton, each variable follows constant, rational slope, which may be

di�erent in di�erent locations. Multirate automata may or may not be initialized.

De�nition 3.5 (Timed Automata [5]). A timed automaton is a multirate automaton such that B` =

f(1; 1; : : : ; 1)g for each location ` 2 V .

Therefore, in a timed automaton, in every location each variable follows the constant slope 1, that is,

_xi = 1 for all 1 � i � n. Each xi is thus referred to as a clock variable. Notice that timed automata

are initialized by de�nition, because the di�erential inclusion never changes.
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0 < y < 1
0 < x < 1

.
1 < y < 2

.
1 < x < 2

.
1 < y < 2

e1

2e

1l

x < 5 y < 10

 y > 9 
x < 5 y < 10

.
0 < x < 1

x = 0

x>4   x = 10 2l

Figure 2. A rectangular automaton

3.2. Transition systems of hybrid systems. Let H = (V; n;X0; F; Inv;R) be a hybrid system,

and let � be a �nite set of subsets of Rn. The hybrid system H generates a transition system

TH;� = (Q;�;!; j=; Q0) with respect to �. Set Q = X = V � Rn and Q0 = X0. Set � = V [ �,

that is, the propositions are the locations and the given sets in �. For � 2 V , de�ne (`; x) j= � i�

` = �, and for � 2 �, de�ne (`; x) j= � i� x 2 �. Finally, de�ne ! = ([e2E e!) [ �! as follows.

Discrete transitions: (`; x)
e! (`0; x0) for e = (`; `0) 2 E i� x 2 Guard(e) and x0 2 Reset(e; x).

Continuous transitions: (`1; x1)
�! (`2; x2) i� `1 = `2 and there exists a real � � 0 and a

di�erentiable curve x: [0; �] ! Rn with x(0) = x1, x(�) = x2, for all t 2 [0; �] we have

x(t) 2 Inv(`1), and for all t 2 (0; �) we have _x(t) 2 F (`1; x(t)).

The continuous � transitions are time-abstract transitions in the sense that the time it takes to reach

one state from another is ignored.

Having de�ned the transition system of a hybrid system allows us to proceed with the conceptual

framework presented in Section 2, and determine language equivalence and bisimulation quotients

of hybrid systems. The next subsection presents some immediate barriers in obtaining such discrete

abstractions which are �nite.

3.3. Undecidability barriers. A variable xi is a two slope variable if there exist k1; k2 2 Q such

that for all locations ` 2 V , either F (`; x)i = fk1g or F (`; x)i = fk2g. The rationals k1 and k2 are

the slopes of xi. The variable xi is a one slope variable if k1 = k2. Note that a clock variable is a

one slope variable with slope k1 = k2 = 1. The following theorem presents an immediate obstacle in

obtaining �nite discrete abstractions of hybrid systems.

Theorem 3.6 (Undecidability of uninitialized multirate automata [37]). Consider the class of mul-

tirate automata with n � 1 clock variables and one two slope variable with slopes k1 6= k2. The

reachability problem (Problem 2.2) is undecidable for this class.
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In other words, there is no computational procedure that takes as input any multirate automaton

H from the given class, and a proposition �, and determines if any trajectory visits a state that

satis�es �. The proof of the undecidability result proceeds by a reduction from the halting problem

for two counter machines, and can be found in [37]. Theorem 3.6 shows that initialization is a

necessary condition for decidability. An additional necessary condition is provided by the following

theorem, which shows that any violation of rectangularity, namely the coupling variables, also leads

to undecidability.

Theorem 3.7 (Undecidability of coupling variables in multirate automata [37]). Suppose we gener-

alize the de�nition of multirate automata so to permit either (1) the intersection of rectangular guard

sets Guard(e) with inequalities of the form xi � xj , or (2) the intersection of rectangular invariant

sets Inv(e) with inequalities of the form xi � xj , or (3) reset maps of the form Reset(e; x)i = xj, for

j 6= i. Consider a class of multirate automata which are generalized in one of these three ways, and

which have n� 1 clock variables and a one slope variable with slope k 6= 1. The reachability problem

(Problem 2.2) is undecidable for this class.

Since the reachability problem is a special case of LTL and CTL model checking, it is clear from

Theorems 3.6 and 3.7 that Problems 2.5 and 2.9 are also undecidable for very restrictive classes

of hybrid systems. Consequently, it must be impossible to construct �nite language equivalence or

bisimulation quotients for transition systems TH;�, where H is a hybrid system of Theorem 3.6 or

3.7, and � = ;.

The above negative results force us to consider hybrid systems with either simpler discrete dynamics

or simpler continuous dynamics, in order for the framework of Section 2 to be successful. In the next

two sections, we survey such results, which, in conjunction with Theorems 3.6 and 3.7, de�ne a tight

boundary between decidability and undecidability for model checking of hybrid systems.

4. Restricting the Flows

In this section, we obtain discrete abstraction of hybrid systems with restricted continuous dynam-

ics. We �rst consider timed automata, which have �nite bisimulation quotients of a very intuitive

structure.

4.1. Timed and multirate automata. A timed automaton H is de�ned by a �nite graph (V;E),

a dimension n, and linear inequalities of the form xi � c, where c 2 Q, which de�ne initial, invariant,

and guard sets, as well as reset maps. Even though the timed automata de�ned in Section 3.1 allow

rational constants in their de�nition, in this section we consider timed automata with only integer

constants. There is no loss of generality in this assumption, because a �nite number of rationals
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can always be rescaled to integers. Furthermore, we restrict the clock variables to range over the

nonnegative reals. There is also no loss of generality in this assumption, because every clock variable

of a timed automaton is bounded from below by initial sets and reset maps. Let Ci be the largest

integer that xi is compared to in the de�nition of H. For example, in Figure 1, the largest integer

that x is compared to is 10 (in the reset map of e1), which is also the largest integer to which y is

compared (in the invariant set of `2).

Given a nonnegative real x 2 R�0, let bxc stand for the 
oor function, let dxe stand for the ceiling

function, and let hxi stand for the fractional part of x; that is, hxi = x�bxc. We de�ne the following

equivalence relations on Rn
�0 and on X = V �Rn

�0, the state space of H.

De�nition 4.1 (Region Equivalence [5]). Two vectors x = (x1; : : : ; xn) and y = (y1; : : : ; yn) in R
n
�0

are region equivalent, written x �R y, if the following two conditions are satis�ed:

� For all 1 � i � n, we have either both bxic = byic and dxie = dyie � Ci, or both dxie > Ci and

dyie > Ci.

� For all 1 � i; j � n, if dxie � Ci and dxje � Cj, then hxii � hxji i� hyii � hyji.

Two states (`1; x1) and (`1; x2) in X are region equivalent, (`1; x1) �R
H (`2; x2), if both `1 = `2 and

x1 �R x2.

Therefore two states of H are region equivalent if they agree on the discrete parts, on the integral

parts of all clock values, and on the ordering of the fractional parts of all clock values. The integral

parts of the clock values determine whether or not a particular clock constraint is met, whereas

the ordering of the fractional parts determines which clock will change its integral part �rst. For

example, if two clocks x and y are between 0 and 1 in a state, then an edge whose guard set is de�ned

by the clock constraint x = 1 can be followed by an edge which is guarded by the clock constraint

y = 1, depending on whether or not the current clock values satisfy x < y. Furthermore, since each

clock variable xi is never compared with constants greater than Ci, then the actual value of xi, once

it exceeds Ci, is of no consequence in determining the validity of any clock constraints.

Example 4.2. The nature of the equivalence classes de�ned by �R can be best understood using

a planar example. Consider (x1; x2) 2 R2�0 with C1 = 2 and C2 = 1. The equivalence classes are

shown in Figure 3. Note that there are only a �nite number of classes, at most n! �2n ��n
i=1(2Ci+2),

where n is the number of clock variables. Thus, the number of classes is exponential in the dimension

and in the size of clock constraints (each constant Ci requires logCi bits for representation in a clock

constraint).

If we are given a �nite set � of rectangular sets, then we de�ne the region equivalence relation �R
H;�

on the states of the timed automaton H just like �R
H , except that the constants Ci are taken to
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0 1 2

1

x2

x1

6 corner points: e.g., f(0,1)g
14 open line segments: e.g., f(x1; x2) j 0 < x1 = x2 < 1g
8 open regions: e.g., f(x1; x2) j 0 < x1 < x2 < 1g

Figure 3. Equivalence classes of planar region equivalence

be maximal also with respect to the constants that de�ne the sets in �. The following is the main

theorem about timed automata.

Theorem 4.3 (Bisimulations of timed automata [5]). Let H be a timed automaton, and let � be a

�nite set of rectangular sets. Then the region equivalence relation �R
H;� is a bisimulation of the

transition system TH;�.

Since the region equivalence relation �R
H;� has a �nite number of equivalence classes, and the corre-

sponding quotient transition system can be constructed e�ectively, we obtain the following corollary.

Corollary 4.4. The LTL and CTL model checking problems (Problems 2.5 and 2.9) can be decided

for timed automata, provided every proposition occurring in temporal formulas is either an automaton

location or a rectangular set.

The above result was the �rst successful extraction of a �nite discrete abstraction from a hybrid

system, and has inspired much research in this direction along with the development of veri�cation

tools.The result can be generalized as follows to multirate automata.

Theorem 4.5 (Bisimulations of initialized multirate automata [3]). Let H be an initialized multi-

rate automaton, and let � be a �nite set of rectangular sets. Then the transition system TH;� has a

�nite bisimulation quotient, which can be constructed e�ectively.

The proof of Theorem 4.5 is based on rescaling the slope of each variable to 1, by appropriately

adjusting all initial, invariant, and guard sets, as well as reset maps. From the region equivalence of

the resulting timed automaton we obtain a bisimulation of the initialized multirate automaton.

Corollary 4.6. The LTL and CTL model checking problems (Problems 2.5 and 2.9) can be decided

for initialized multirate automata, provided every proposition occurring in temporal formulas is either

an automaton location or a rectangular set.

Notice that restricting ourselves to initialized multirate automata in Theorem 4.5 does not violate

the conditions of Theorem 3.6, by which multirate automata which are not initialized cannot, in
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general, have a �nite bisimulation quotient. Similarly, restricting ourselves to propositions which are

rectangular sets in Corollary 4.6 does not violate the spirit of Theorems 3.7.

4.2. Rectangular automata. Up to this point, the restricted classes of hybrid systems that we

have presented admit �nite bisimulation quotients. In this section, we show that more general hybrid

automata do not admit �nite bisimulation quotients, but may admit �nite language-equivalence

quotients, which are coarser quotients.

Theorem 4.7 (Language equivalences of initialized rectangular automata [37, 38]). LetH be an ini-

tialized rectangular automaton, and let � be a �nite set of rectangular sets. Then the transition system

TH;� has a �nite language-equivalence quotient, which can be constructed e�ectively.

The main idea of the proof is to convert an initialized rectangular automaton to an initialized

multirate automaton, by replacing each variable xi, which satis�es a di�erential inclusion of the form

_xi 2 [ai; bi], by two variables named xli and xui , which satisfy _xli = ai and _xui = bi, respectively. The

variables xli and x
u
i keep track of the lower and upper bounds of xi. The initial, invariant, and guard

sets, as well as the reset maps must be adjusted accordingly. For example, if the guard set is de�ned

by xi � 3, then it is replaced by xli � 3, and if xui > 3 then xui is reset to 3. This conversion from the

rectangular to a multirate automaton is language preserving. Hence, from the �nite bisimulation of

the initialized multirate automaton (Theorem 4.5) we can construct a �nite language equivalence of

the original initialized rectangular automaton.

Corollary 4.8. The LTL model checking problem (Problem 2.5) can be decided for initialized rect-

angular automata, provided every proposition occurring in temporal formulas is either an automaton

location or a rectangular set.

The conversion from initialized rectangular automata to initialized multirate automata may not

preserve branching properties, such as those expressible in CTL. In general, initialized rectangular

automata do not admit �nite bisimulation quotients.

Theorem 4.9 (Lack of �nite bisimulation quotients for initialized rectangular automata [32]). There

exist an initialized rectangular automaton H and a �nite set � of rectangular sets such that every

bisimulation of the transition system TH;� has in�nitely many equivalence classes.

In order to simplify the proof of the above theorem, we consider a slight extension of De�nition 3.3

and allow more than one edge between a pair of locations.

Example 4.10. Consider the simple rectangular automaton H shown in Figure 4. The automaton

has only one location, `, is trivially initialized, and has two variables, x and y, which are allowed to
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Inv(  )               y = 0

Inv(  )              x = 0

Figure 4. An initialized rectangular automaton without �nite bisimulation quotient

live on the unit square; that is, Inv(`) = f(x; y) 2 R2 j 0 � x � 1 and 0 � y � 1g. Furthermore,

Init(`) = Inv(`). Both x and y satisfy the di�erential inclusion _x 2 [1; 2] and _y 2 [1; 2]. There

are two edges from ` to itself, e1 and e2, with Guard(e1) = Guard(e2) = Inv(`). Furthermore,

Reset(e1; (x; y)) = f(x; 0)g and Reset(e2; (x; y)) = f(0; y)g; that is, e1 and e2 reset y or x to 0,

respectively. Let � consist of the two rectangular sets de�ned by x = 1 and y = 1. Then the

bisimulation algorithm (Algorithm 2.2) does not terminate on the transition system TH;�.

The classes of hybrid systems presented in this section are expressive enough to model many systems

arising in real-time communication networks, real-time circuits, as well as real-time software. Timed

automata allow us to model accurate clocks, and rectangular automata allow us to model clocks with

bounded drift. However, the continuous dynamics (
ows) that can captured directly by rectangular

automata is rather limited for control applications, and generally involves approximations [36, 67]. In

order to capture more complicated continuous dynamics directly without violating the undecidability

results of Section 3.3, one needs to restrict the discrete dynamics (jumps) of a hybrid system.

5. Restricting the Jumps

Our goal in this section is to apply the framework of Section 2 to hybrid systems with more com-

plicated continuous behavior. However, the following example shows that, even in the absence of

discrete dynamics, the bisimulation algorithm does not terminate.
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Example 5.1. Consider the trivial hybrid system with only one discrete location `, no discrete

jumps, and let F be the linear vector �eld on R2

_x1 = 0:2 � x1 + x2

_x2 = �x1 + 0:2 � x2
Assume the partition of R2 consists of the following three sets (see Figure 5):

P1 = f(x; 0) : 0 � x � 4g
P2 = f(x; 0) : �4 � x < 0g
P3 = R2 n (P1 [ P2)

The trajectories of F are spirals moving away from the origin. The �rst iteration of the algorithm

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

Figure 5. Bisimulation algorithm does not terminate

partitions P2 into P4 = P2 \ Pre(P1) = f(x; 0) : z1 � x < 0g and P2 n Pre(P1), where z1 < 0 is the

x1-coordinate of the �rst intersection point of the spiral through (4; 0) with P2. The second iteration

subdivides P1 into P5 = P1 \ Pre(P4) = f(x; 0) : 0 � x � z2g and P1 n Pre(P4) where z2 > 0

is the x1-coordinate of the next point of intersection of the spiral with P1. This process continues

inde�nitely since the spiral intersects P1 in in�nitely many points, and therefore the algorithm does

not terminate. In fact, the bisimilarity quotient is not �nite.

From the above example it is clear that the critical problem one must investigate is how the trajec-

tories of F (`; �) interact with the sets inside a single location `. This requires that the trajectories
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of the vector �eld F (`; �) have nice intersection properties with such sets. Since the goal is to obtain

�nite partitions, it will become important that we restrict the study to classes of sets with global

�niteness properties, for example, sets with �nitely many connected components. Even though these

desirable properties are geometric in nature, they are captured by the notion of order-minimality

(o-minimality) from model theory.

5.1. O-Minimal Structures. In this section we provide a brief introduction to o-minimal structures

[77], and then use it to construct �nite bisimulations of certain classes of hybrid systems. A brief

introduction to �rst-order logic can be found in Appendix A. More introductory material on �rst-

order logic can be found in [27, 76], and the use of various logics for hybrid systems is detailed

in [23].

De�nition 5.2 (O-Minimal Structure). A (model-theoretic) structure over the reals is called o-minimal

(order minimal) if every de�nable subset (with parameters) of R is a �nite union of points and open

intervals (possibly unbounded).

For structures which extend (R; <;+;�; 0; 1), this is equivalent to checking the above property for

sets de�nable without parameters [56]. For example, consider the subset of the reals de�ned by

fx 2 R j p(x) � 0g, where p(x) is some polynomial. Then, since every polynomial has a �nite

number of roots, the set where it is not negative is a �nite union of points and intervals. This

�niteness property must hold for any de�nable set in the structure, fx 2 R j �(x)g, even if the

formula �(x) contains quanti�ers.

The class of o-minimal structures over the reals is quite rich. In [72] it was shown that the structure

(R; <;+;�; �; 0; 1), admits elimination of quanti�ers, by proposing an algorithm which given any

formula in (R; <;+;�; �; 0; 1) converts it to an equivalent formula without quanti�ers. This, together

with an analysis of the sets de�nable by quanti�er-free formulas shows that the structure is o-

minimal. Tarski was also interested in extending this result to (R; <;+;�; �; ex; 0; 1), where there

is an additional symbol in the language for the exponential function. While this structure does

not admit elimination of quanti�ers, it was shown in [80] that this structure is o-minimal. Another

important extension is obtained as follows. Assume f is a real-analytic function in a neighborhood

of the cube [�1; 1]n � Rn. Let f̂ : Rn ! R be the function de�ned by

f̂(x) =

8<
:f(x) if x 2 [�1; 1]n

0 otherwise

We call such functions restricted analytic functions. These functions are useful to describe the behav-

ior of some periodic trajectories. For example, the functions sin and cos restricted to a period are suf-

�cient to de�ne closed orbits of some linear systems. In [78], the structure (R; <;+;�; �; ex; ff̂g; 0; 1),
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which is an extension of (R; <;+;�; �; ff̂g; 0; 1), was shown to be o-minimal. The following table

summarizes o-minimal structures over the reals along with some examples of sets and vector �eld

trajectories that are de�nable in these theories.

Table 1 : O-Minimal Structures

Structure Sample De�nable Sets Sample De�nable Trajectories

(R; <;+;�; 0; 1) Polyhedral sets Linear trajectories

(R; <;+;�; �; 0; 1) Semialgebraic sets Polynomial trajectories

(R; <;+;�; �; ff̂g; 0; 1) Subanalytic sets Polynomial trajectories

(R; <;+;�; �; ex; 0; 1) Semialgebraic sets Exponential trajectories

(R; <;+;�; �; ex; ff̂g; 0; 1) Subanalytic sets Exponential trajectories

Based on the notion of o-minimality, the following class of hybrid systems is de�ned.

De�nition 5.3 (O-Minimal Hybrid Systems). A hybrid system H is called o-minimal if

� for each ` 2 V , F (`; �) is a di�erential equation whose 
ow is complete (de�ned for all time)

� for each e 2 E, the reset map Reset(e; x) is a piecewise constant (with �nite number of pieces)

but set valued map.

� for each ` 2 V and all edges e 2 E, the sets Inv(`), Init(`), and Guard(e), and the 
ow of

F (`; �) are de�nable in the same o-minimal structure over the reals.

Note that o-minimal hybrid systems place a restriction on the discrete jumps, namely that every

time a discrete jump is taken, all states must be reinitialized, possibly nondeterministically. Notice,

however, that we do allow piecewise constant set valued maps, which can be used to overapproximate,

arbitrarily closely, useful reset maps like the identity map. A more detailed analysis of set valued

maps can be found in [22]. This restriction on the discrete dynamics along with the powerful structure

of o-minimal structures, allows us to prove the following theorem without violating the results of

Section 3.3. Even though the following theorem is proved in [44] for constant, set valued reset maps,

the proof can be easily adapted to handle piecewise constant, set valued resets.

Theorem 5.4 (Bisimulations of O-Minimal Hybrid Systems [44]). Let H be an o-minimal hybrid

system, and let � be a �nite collection of sets de�nable in the same o-minimal structure. Then

the transition system TH;� has a �nite bisimulation quotient.

Theorem 5.4 is appealing since it can capture hybrid systems with more complicated continuous

dynamics. To illustrate the continuous behavior that can be captured, we apply Theorem 5.4 for

each o-minimal structure of Table 1, and we provide examples of de�nable, o-minimal hybrid systems.



22 R. ALUR, T. HENZINGER, G. LAFFERRIERE, AND G. PAPPAS

(R; <;+;�; 0; 1). The de�nable sets in this structure capture polyhedral sets whereas the de�nable


ows capture linear 
ows. In particular, it captures timed and multirate automata in the special

case where all reset maps are constant. Timed and multirate automata, in general, allow more

complicated reset maps, like the identity map, in their discrete jumps.

(R; <;+;�; �; 0; 1). In [72], it was shown that (R; <;+;�; �; 0; 1) is decidable. In fact, the deci-

sion procedure consisted of two parts: �rst an algorithm for eliminating quanti�ers, and second an

algorithm for deciding quanti�er free formulas. Because of these results, the de�nable sets with

parameters in this structure are the semialgebraic sets, which are de�ned as boolean combinations

of sets of the form fx : p(x) < 0g and fx : p(x) = 0g where p(x) is a polynomial. The de�nable 
ows

in this structure are semialgebraic. Therefore, the o-minimal hybrid systems corresponding to this

structure are hybrid systems H where all sets and 
ows are semialgebraic.

(R; <;+;�; �; ff̂g; 0; 1). In order to describe the de�nable sets in this structure, we need the notions

of semianalytic and subanalytic sets. We provide below an informal de�nition of these notions. For

precise de�nitions and properties the reader is referred to [13]. We say that a subset S of Rn is

semianalytic in Rn if for every x 2 Rn there exists a neighborhood U of x such that U \ S is a

boolean combination of sets of the form fx : f(x) < 0g and fx : f(x) = 0g where f is an analytic

function on U . Roughly speaking, a local description of a semianalytic set is analogous to that of

a semialgebraic set with analytic functions replacing polynomials. A subset S of Rn is subanalytic

in Rn, if it is locally the image of a relatively compact semianalytic set T under an analytic map

(de�ned on �T ). A subset S of Rn is �nitely subanalytic if its image under the map p : Rn �! [�1; 1]n
given by

p(x1; : : : ; xn) =

 
x1p
1 + x21

; : : : ;
xnp
1 + x2n

!

is subanalytic. The �nitely subanalytic sets in Rn are de�nable in this structure.

Even though polynomial 
ows are de�nable in this structure, since the functions f̂ are zero outside

a compact set, these functions cannot be used to de�ne complete 
ows. However, the Pre operator

corresponding to some periodic 
ows may still be de�nable. Consider for example, a hybrid system

H whose vector �elds are diagonalizable linear vector �elds with purely imaginary eigenvalues and

all relevant sets are de�nable in this structure. Since the restriction of sin on [��; �] is de�nable,
the Pre operator corresponding to F is de�nable. This leads to the following corollary of Theorem

5.4, which generalizes to Rn the planar results in [17, 43, 47].

Corollary 5.5. Let H be a hybrid system for which all relevant sets (guards, invariants, initial

conditions) are �nitely subanalytic and all vector �elds are diagonalizable linear vector �elds with

purely imaginary eigenvalues. Let � be a �nite collection of �nitely subanalytic sets. Then the

transition system TH;� has a �nite bisimulation quotient.
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(R; <;+;�; �; ex; ff̂g; 0; 1). This structure, which extends (R; <;+;�; �; ff̂g; 0; 1) by the exponential

function, besides enriching the class of de�nable sets, allows us to capture new classes of de�nable


ows. In particular, the 
ows of linear vector �elds with real eigenvalues are de�nable. The following

corollary is then an immediate consequence of Theorem 5.4.

Corollary 5.6. Let H be a hybrid system for which all relevant sets are �nitely subanalytic and all

vector �elds are of one of the following two forms:

� linear vector �elds with real eigenvalues

� diagonalizable linear vector �elds with purely imaginary eigenvalues

Let � be a �nite collection of �nitely subanalytic sets. Then the transition system TH;� has a �nite

bisimulation quotient.

The above theorem extends the planar results in [43] to Rn. Note that relaxations of Corollary 5.6

would allow spiraling, linear vector �elds which are not de�nable in this structure. As was shown

by Example 5.1, such systems, in general, do not admit �nite bisimulations. This shows that even

though the conditions of Theorem 5.4 are su�cient, they are very tight su�cient conditions.

The above results are existential and show that a �nite bisimulations exist for the above classes of

o-minimal hybrid systems. That means that the bisimulation algorithm will terminate. To show

decidability, we must also show that the bisimulation algorithm is computable, which means that

there is an e�ective procedure to compute the Pre operator. This can be achieved for various classes

of o-minimal hybrid systems, by posing each step of the bisimulation algorithm as a quanti�er

elimination problem in the structure (R;+;�; �; <; 0; 1). The proof then consists of showing that for

semi-algebraic sets A � Rn, the task of computing the preimage Pre(A) under the 
ow of such linear

systems, reduces to quanti�er elimination in (R;+;�; �; <; 0; 1) by a sequence of de�nable variable

substitutions which eliminate the exponential terms.

Theorem 5.7 (Hybrid Systems with Linear Di�erential Equations [45]). Consider the class of o-

minimal hybrid system H where

� for each ` 2 V and edges e 2 E, the sets Inv(`), Init(`), and Guard(e) are semialgebraic with

rational coe�cients, and

� for all ` 2 V , F (`; x) = A`x, where A` 2 Qn�n, and either

{ A` is nilpotent; or,

{ A` is diagonalizable and has real, rational eigenvalues; or,

{ A` has purely imaginary eigenvalues i!, with ! rational, and its real Jordan form is block

diagonal with 2� 2 blocks.

Then CTL and LTL model checking for this class of hybrid systems is decidable.
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As an immediate consequence, the reachability problem is also decidable for the above classes of

hybrid systems. Theorem 5.7 can be extended to include linear hybrid systems where in each discrete

state the dynamics are of the form _x = Ax +Bu for various types of inputs..

Theorem 5.8 (Hybrid Systems with Linear Control Systems [46]). Consider the class of o-minimal

hybrid system H where

� for each ` 2 V and edges e 2 E, the sets Inv(`), Init(`), and Guard(e) are semialgebraic with

rational coe�cients, and

� for all ` 2 V , F (`; x) = A`x+B`u, where A` 2 Qn�n, B` 2 Qn�k , and either

{ A` is nilpotent, and each entry of u is a polynomial in t; or,

{ A` is diagonalizable, has real rational eigenvalues, and each entry of u is of the form e�t

with � rational, and not an eigenvalue of A`; or,

{ A` has purely imaginary eigenvalues of the form i! with ! rational, and the entries in the

input u are of the form sin(�t) or cos(�t) with � rational, and � 6= �!,

Then CTL and LTL model checking for this class of hybrid systems H is decidable.

The above results remain valid if the inputs are allowed to be rational, linear combinations of the

functions of the corresponding type: exponentials in case of real eigenvalues, and sinusoidal in the

case of imaginary eigenvalues. In all cases the same resonance restrictions apply on the parameters

� and �.

6. Conclusions

In this paper, we have considered the algorithmic analysis of hybrid systems by the process of

abstraction. We have presented a uni�ed collection of results where �nite, property preserving

abstractions of hybrid systems are possible. Given the known undecidability barriers, we showed

that discrete abstractions of hybrid systems are possible when either the continuous or the discrete

dynamics are restricted.

In cases where discrete abstractions with equivalent properties cannot be constructed, abstractions

whose properties are su�cient to check can be useful. This approach is taken in [18, 21, 34, 30, 60,

61, 63, 67, 70], where reachable sets of di�erential equations are over- or under-approximated. This

line of work often allows us to verify instances of hybrid systems even if they belong to undecidable

classes. The construction of tight approximations along with the tradeo� between complexity and

precision is of great importance and should be pursued further. Research along this direction will

expand the scope and applicability of computational tools, like Kronos and HyTech. This is
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needed before they can be applied on large scale, hybrid systems with complicated discrete and

continuous dynamics.
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Appendix A. First-Order Logic

A language is a set of symbols separated into three groups: relations, functions and constants. The

sets L0 = f<;+;�; 0; 1g, LR = f<;+;�; �; 0; 1g, and Lexp = f<;+;�; �; 0; 1; expg are examples of

languages where < (less than) is the relation, + (plus), � (minus), � (product) and exp (exponenti-

ation) are the functions, and 0 (zero) and 1 (one) are the constants.

Consider a countable collection of variables W = fx; y; z; x0; x1; : : : g. The set of terms of a language

is inductively de�ned as follows. A term � is a variable, a constant, or F (�1; : : : ; �m), where F is

a m-ary function and �i, i = 1; : : : ;m are terms. For instance, x � 2y + 3 and x + yz2 � 1 are

terms of L0 and LR, respectively. In other words, terms of L0 are linear expressions and terms of

LR are polynomials with integer coe�cients. Notice that integers are the only numbers allowed in

expressions (they can be obtained by repeatedly adding the constant 1).

The atomic formulas of a language are of the form �1 = �2, or R(�1; : : : ; �n), where �i, i = 1; : : : ; n

are terms and R is an n-ary relation. For example, xy > 0 and x2+1 = 0 are atomic formulas of LR.
The set of (�rst-order) formulas is recursively de�ned as follows. An atomic formula � is a formula,

and if �1 and �2 are formulas and x is a variable, then �1 ^ �2, :�1, 8x : �1 or 9x : �1 are formulas.

Examples of LR-formulas are 8x 8y : xy > 0, 9x : x2 � 2 = 0, and 9w : xw2 + yw + z = 0. The

occurrence of a variable in a formula is free if it is not inside the scope of a quanti�er; otherwise, it

is bound. For example, in the formula 9w : xw2 + yw + z = 0. x, y, and z are free and w is bound.

We often write �(x1; : : : ; xn) to indicate that x1; : : : ; xn are the free variables of the formula �. A

sentence of LR is a formula with no free variables. The formula 8x 8y : xy > 0 is a sentence whereas

9w : xw2 + yw + z = 0 is not.

A (model-theoretic) structure over a set S of a language consists of a non-empty set S and an

interpretation of the relations, functions and constants. For example, (R; <;+;�; �; 0; 1) and (Q; <

;+;�; �; 0; 1), are structures of LR over R and Q respectively, with the usual interpretation of all

the symbols. A set Y � Sn is de�nable if there exists a formula �(x1; : : : ; xn) such that Y =

f(a1; : : : ; an) 2 Sn j �(a1; : : : ; an)g. For example, over R, the formula x2 � 2 = 0 de�nes the set

fp2;�p2g. A set is de�nable with parameters in C, if each c 2 C is a constant. For example,
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x2�� = 0 de�nes the set fp�;�p�g over R, using � as a parameter. If a language L is interpreted

over R and C = R, we simply say that a set is de�nable with parameters (without mentioning C).
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